Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Общие сведения о диэлектриках




Диэлектрики – это самая многочисленная группа материалов. Они бывают природными и синтетическими, органическими и неорганическими, газообразными, жидкими, твердыми, аморфными, кристаллическими.

Разнообразно и применение диэлектриков в современной технике. Известно, что диэлектрические материалы применяются в качестве изоляции от воздействия электрического тока. Но в современной РЭА и в вычислительной технике они все чаще применяются как активные элементы, как ЗУ, как преобразователи механических воздействий в электрический сигнал и наоборот, в качестве термочувствительных датчиков и так далее.

Но при всем многообразии диэлектрических материалов все диэлектрики обладают характерными особенностями. Важными из них является способность поляризоваться в электрическом поле.

 

Поляризация диэлектриков

Поляризация – это процесс смещения и упорядочения связанных электрических зарядов в диэлектрике под действием внешнего электрического поля.

Способность материала поляризоваться в электрическом поле характеризуется относительной диэлектрической проницаемостью. Диэлектрик, включенный в электрическую цепь можно рассматривать как конденсатор определенной емкости Cд:

ε = Cд ∕ C0, (4.1)

показывает во сколько раз емкость конденсатора с данным диэлектриком CД больше емкости того же конденсатора в вакууме С0.

Произведение относительной диэлектрической проницаемости ε на электрическую постоянную ε0 называется абсолютной диэлектрической проницаемостью:

εа = ε 0 ∙ εr,­ (4.2)

где ε0 = 8,854 ∙ 10-12 Ф/м – электрическая постоянная.

 

Относительная диэлектрическая проницаемость (далее диэлектрическая проницаемость) безразмерная величина; она количественно определяет способность диэлектрика поляризоваться и образовывать электрическую ёмкость

εr вакуума = 1, εr любого в-ва > 1.

Она может составлять несколько единиц, несколько десятков и даже сотен и тысяч единиц. (См. таблицу 4.1)

 

Таблица 4.1

Материал ε Материал ε  
Парафин 1,9 – 2,2 Пьезокерамика 100 – 1800
Полистирол 2,4 – 2,6 Гетинакс 5 – 6
Сера 3,6 – 4,0 Текстолит 6 – 7
Алмаз 5,6 – 5,8 Стёкла 4 – 25
Камен. соль   Ситалл 5 – 8
Рутил (TiO2)   Сегнетовая соль До 6000
Корунд (Al2O3)  
               

В зависимости от агрегатного состояния (жидкое, твёрдое, газообразное) и структуры диэлектриков различают следующие виды поляризации

 

Электронная поляризация

Все материалы состоят из атомов, а атом из ядра (протонов) и электронов, вращающихся вокруг него. В отсутствие внешнего электрического поля, электроны быстро вращаются вокруг ядра по круговой орбите и центры приложения зарядов положительного и отрицательного совпадают. Если теперь этот атом поместить в однородное электрическое поле с напряженностью ε, то отрицательно заряженные электроны при своем вращении сместятся в сторону положительного электрода (рисунок 4.1). Центр отрицательного заряда изменит свое положение, и система превратится в диполь. Таким образом, произошла поляризация диэлектрика. Этот вид поляризации называется электронной, происходит она практически мгновенно за время ≈ 10-15 с, поэтому её называют мгновенной. Она характерна для всех типов диэлектриков. Она происходит без рассеивания энергии, проявляется на всех частотах, т.е. практически не зависит от частоты (f = 1014 - 1016 Гц).

Электронная поляризация – это упругое смещение и деформация электронных оболочек атомов.

Рисунок 4.1 – схематическое изображение электронной поляризации: а – неполяризованный атом при отсутствии электрического поля; б – поляризованный атом при воздействии электрического поля.

ε уменьшается с увеличением температуры, т.к. происходит тепловое расширения диэлектрика и число частиц в единице объема уменьшается.

Изменение ε от Т характеризуется ТК (температурный коэффициент) диэлектрической проницаемости.

αε = ∂ε ∕ (ε ∙ ∂T) (4.3)

 

Рисунок 4.2 – График зависимости диэлектрической проницаемости полимеров от частоты:

1 – полистирол; 2 – политетрафторэтилен.

Ионная поляризация

 

Характерна для твердых тел с ионным строением (каменная соль; в узлах кристаллической решетки находятся ионы Na+ и Cl¯).

При приложении поля ионы Na смещаются по направлению внешнего электрического поля Е, а ионы Cl – против направления (рисунок 4.3). Смещение двух разноименно заряженных ионов приводит к появлению элементарного электрического момента:

μ = q ∙ ∆ x, (4.4)

где ∆ x - смещение ионов.

Сумма всех этих элементарных электрических моментов определяет ионную поляризацию.

Время установления 10-13 с.

Поляризованность P увеличивается с увеличением температуры, т.к. диэлектрик расширяется, расстояние между ионами увеличивается, значит ослабляются силы упругой связи между ионами

Поляризация не зависит от t, не связана с потерями энергии.

 

Рисунок 4.3 – Схематическое изображение ионной поляризации. Ионная кристаллическая решетка:

а – при отсутствии электрического поля; б – при воздействии электрического поля.





Поделиться с друзьями:


Дата добавления: 2016-11-02; Мы поможем в написании ваших работ!; просмотров: 1667 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Не будет большим злом, если студент впадет в заблуждение; если же ошибаются великие умы, мир дорого оплачивает их ошибки. © Никола Тесла
==> читать все изречения...

2655 - | 2321 -


© 2015-2025 lektsii.org - Контакты - Последнее добавление

Ген: 0.009 с.