Лабораторное занятие №3
Введение
Генетические алгоритмы возникли в результате наблюдения и попыток копирования естественных процессов, происходящих в мире живых организмов, в частности, эволюции и связанной с ней селекции (естественного отбора) популяций живых существ. Конечно, при подобном сопоставлении следует обращать внимание на принципиально различную длительность протекания упоминаемых естественных процессов, т.е. на чрезвычайно быструю обработку информации в нервной системе и очень медленный процесс естественной эволюции. Однако при компьютерном моделировании эти различия оказываются несущественными.
Идею генетических алгоритмов высказал Дж. Холланд в конце шестидесятых - начале семидесятых годов XX века. Он заинтересовался свойствами процессов естественной эволюции (в том числе фактом, что эволюционируют хромосомы, а не сами живые существа). Холланд был уверен в возможности составить и реализовать в виде компьютерной программы алгоритм, который будет решать сложные задачи так, как это делает природа - путем эволюции. Поэтому он начал трудиться над алгоритмами, оперировавшими последовательностями двоичных цифр (единиц и нулей), получившими название хромосом. Эти алгоритмы имитировали эволюционные процессы в поколениях таких хромосом. В них были реализованы механизмы селекции и репродукции, аналогичные применяемым при естественной эволюции. Так же, как и в природе, генетические алгоритмы осуществляли поиск «хороших» хромосом без использования какой-либо информации о характере решаемой задачи. Требовалась только некая оценка каждой хромосомы, отражающая ее приспособленность. Механизм селекции заключается в выборе хромосом с наивысшей оценкой (т.е. наиболее приспособленных), которые репродуцируют чаще, чем особи с более низкой оценкой (хуже приспособленные). Репродукция означает создание новых хромосом в результате рекомбинации генов родительских хромосом. Рекомбинация - это процесс, в результате которого возникают новые комбинации генов. Для этого используются две операции: скрещивание, позволяющее создать две совершенно новые хромосомы потомков путем комбинирования генетического материала пары родителей, а также мутация, которая может вызывать изменения в отдельных хромосомах.
В генетических алгоритмах применяется ряд терминов, заимствованных из генетики, прежде всего гены и хромосомы, а также популяция, особь, аллель, генотип, фенотип.
Генетические алгоритмы применяются при разработке программного обеспечения, в системах искусственного интеллекта, оптимизации, в искусственных нейронных сетях и в других отраслях знаний.
Теоретическая часть
Генетические алгоритмы и традиционные методы оптимизации
Генетический алгоритм представляет собой метод, отражающий естественную эволюцию методов решения проблем, и в первую очередь задач оптимизации. Генетические алгоритмы - это процедуры поиска, основанные на механизмах естественного отбора и наследования. В них используется эволюционный принцип выживания наиболее приспособленных особей. Они отличаются от традиционных методов оптимизации несколькими базовыми элементами.
Свойства генетических алгоритмов:
1) обрабатывают не значения параметров самой задачи, а их закодированную форму;
2) осуществляют поиск решения исходя не из единственной точки, а из их некоторой популяции;
3) используют только целевую функцию, а не ее производные либо иную дополнительную информацию,
4) применяют вероятностные, а не детерминированные правила выбора.
Перечисленные четыре свойства, которые можно сформулировать также как кодирование параметров, операции на популяциях, использование минимума информации о задаче и рандомизация операций приводят в результате к устойчивости генетических алгоритмов и к их превосходству над другими широко применяемыми технологиями.
Основные понятия генетических алгоритмов
При описании генетических алгоритмов используются определения, заимствованные из генетики.
Популяция - это конечное множество особей.
Особи, входящие в популяцию, в генетических алгоритмах представляются хромосомами с закодированным в них множествами параметров задачи, т.е. решений, которые иначе называются точками в пространстве поиска (search points). В некоторых источниках особи называются организмами.
Хромосомы (другие названия - цепочки или кодовые последовательности) - это упорядоченные последовательности генов.
Ген (также называемый свойством, знаком или детектором) - это атомарный элемент генотипа, в частности, хромосомы.
Генотип или структура - это набор хромосом данной особи. Следовательно, особями популяции могут быть генотипы либо единичные хромосомы (довольно распространенный случай, когда генотип состоит из одной хромосомы).
Фенотип - это набор значений, соответствующих данному генотипу, т.е. декодированная структура или множество параметров задачи (решение, точка пространства поиска).
Аллель - это значение конкретного гена, также определяемое как значение свойства или вариант свойства.
Локус или позиция указывает место размещения данного гена в хромосоме (цепочке). Множество позиций генов - это локи.
Очень важным понятием в генетических алгоритмах считается функция приспособленности (fitness function), иначе называемая функцией оценки. Она представляет меру приспособленности данной особи в популяции. Эта функция играет важнейшую роль, поскольку позволяет оценить степень приспособленности конкретных особей в популяции и выбрать из них наиболее приспособленные (т.е. имеющие наибольшие значения функции приспособленности) в соответствии с эволюционным принципом выживания «сильнейших» (лучше всего приспособившихся). Функция приспособленности также получила свое название непосредственно из генетики. Она оказывает сильное влияние на функционирование генетических алгоритмов и должна иметь точное и корректное определение. В задачах оптимизации функция приспособленности, как правило, оптимизируется. В теории управления функция приспособленности может принимать вид функции погрешности, а в теории игр - стоимостной функции. На каждой итерации генетического алгоритма приспособленность каждой особи данной популяции оценивается при помощи функции приспособленности, и на этой основе создается следующая популяция особей, составляющих множество потенциальных решений проблемы, например, задачи оптимизации.
Очередная популяция в генетическом алгоритме называется поколением, а к вновь создаваемой популяции особей применяется термин «новое поколение» или «поколение потомков».
Пример 1.
Рассмотрим функцию
(1)
и допустим, что x принимает целые значения из интервала от 0 до 15.
Задача оптимизации этой функции заключается в перемещении по пространству, состоящему из 16 точек со значениями 0, 1,..., 15 для обнаружения той точки, в которой функция принимает максимальное (или минимальное) значение.
В этом случае в качестве параметра задачи выступает переменная х. Множество {0, 1,..., 15} составляет пространство поиска и одновременно - множество потенциальных решений задачи. Каждое из 16 чисел, принадлежащих к этому множеству, называется точкой пространства поиска, решением, значением параметра, фенотипом. Следует отметить, что решение, оптимизирующее функцию, называется наилучшим или оптимальным решением. Значения параметра x от 0 до 15 можно закодировать следующим образом:
0000, 0001, 0010, 0011, 0100, 0101, 0110, 0111,
1000, 1001, 1010, 1011, 1100, 1101, 1110, 1111.
Это широко известный способ двоичного кодирования, связанный с записью десятичных цифр в двоичной системе. Представленные кодовые последовательности также называются цепями или хромосомами. В рассматриваемом примере они выступают и в роли генотипов. Каждая из хромосом состоит из 4 генов (иначе можно сказать, что двоичные последовательности состоят из 4 битов). Значение гена в конкретной позиции называется аллелью, принимающей в данном случае значения 0 или 1. Популяция состоит из особей, выбираемых среди этих 16 хромосом. Примером популяции с численностью, равной 6, может быть, например, множество хромосом {0010, 0101, 0111, 1001, 1100, 1110}, представляющих собой закодированную форму следующих фенотипов: { 2, 5, 7, 9, 12, 14}. Функция приспособленности в этом примере задается выражением (1). Приспособленность отдельных хромосом в популяции определяется значением этой функции для значений x, соответствующих этим хромосомам, т.е. для фенотипов, соответствующих определенным генотипам.