Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Описание лабораторной установки. Определение констант фильтрования, удельного со­противления осадка и сопротивления фильтровальной перегородки




ИССЛЕДОВАНИЕ ПРОЦЕССА ФИЛЬТРОВАНИЯ НА ЭЛЕМЕНТЕ ВАКУУМ-ФИЛЬТРА

Цель работы

Определение констант фильтрования, удельного со­противления осадка и сопротивления фильтровальной перегородки.

Содержание работы

1. Ознакомиться с закономерностями фильтрова­ния с образованием слоя несжимаемого осадка.

2. Изучить методику определения констант филь­трования.

3. Провести опыты по разделению модельных су­спензий.

4. Построить по опытным данным график зависимости τ/g=f (g) и определить значения констант фильтрования, удельное сопротивление осадка в со­противление фильтровальной перегородки.

Теоретическая часть

3.1. Основные понятия и термины.

В работе используются следующие понятия я тер­мины:

суспензия, фильтрование, фильтр, фильтровальная перегородка, осадок, фильтрат, схема устройства и принцип работы простейшего фильтра;

способ создания разности давления при фильтро­вании;

материалы, применяющиеся для изготовления фильтровальных перегородок;

фильтрование с образованием слоя осадка, сжи­маемые и несжимаемые осадки, фильтрование с за­купориванием пор, промежуточное фильтрование, фильтрование с применением вспомогательных ве­ществ;

скорость фильтрования, фильтрование при посто­янной разности давления, при постоянной скорости и при переменных значениях давления и скорости;

удельный объем фильтрата, сопротивление осадка и перегородки, удельное сопротивление осадка, кон­станты фильтрования.

Перед выполнением лабораторной работы необхо­димо уяснить содержание этих терминов и понятийно учебнику (1, стр. 194—198, 205—206) и дополнитель­ному теоретическому материалу, изложенному в на­стоящих методических указаниях.

3.2. Скорость фильтрования и факторы, влияющие на ее величину при образовании слоя несжимаемого осадка на фильтровальной перегородке

Важным показателем работы фильтра является скорость фильтрования, определяемая как объем фильтрата, проходящего в единицу времени через единицу поверхности фильтровальной перегородки

(9.1)

где V — объем полученного фильтрата;

τ— время фильтрования;

F — площадь поверхности фильтровальной перегородки;

— удельный объем фильтрата (объем фильтрата, полученный с единицы по­верхности фильтрования).

Скорость фильтрования прямо пропорциональна разности давлений и обратно пропорциональна вяз­кости фильтрата и общему сопротивлению фильтро­вания

(9.2)

где ∆р — разность давлений по обе стороны фильтровальной перегородки;

μ — вязкость фильтрата;

R = Rос + R — общее сопротивление фильтра;

Roc — сопротивление осадка;

Rфп — сопротивление фильтровальной neрегородки.

Сопротивление осадка можно определить как

(9.3)

где r — удельное сопротивление осадка;

h — толщина осадка.

Объем осадка, полученного на фильтровальной перегородке, равен

(9.4)

Отношение полученных объемов влажного осадка и фильтрата обозначимкак

(9.5)

 

На основании выражений (9.4) и (9.5) получаем

(9.6)

и тогда на основании (9.3) сопротивление осадка оп­ределится как

(9.7)

Подставив это значение сопротивления осадка в уравнение (9.2), получим следующеевыражение для скорости фильтрования

(9.8)

Из полученного выражения следует, что при прочих равных условиях скорость фильтрования тем больше и производительность фильтра тем выше, чем меньше удельный объём полученного фильтрата или пропор­циональная этому объему толщина слоя осадка на фильтровальной перегородке. Поэтому для повыше­ния производительности фильтра необходимо стремиться к скорейшему удалению осадка с фильтро­вальной перегородки. Для фильтров непрерывного действия это равносильно требованию удалять с филь­тровальной перегородки слой осадка наименьшей толщины.

Если сопротивление фильтровальной перегородки мало и можно принять, что Rфп ≈0, то на основании уравнения (9.8) получим

(9.9)

Из этого выражения следует, что удельное сопротив­ление осадка численно равно разности давлений, не­обходимой для того, чтобы фильтрат, вязкость кото­рого равна единице, протекал со скоростью, равной единице, через слой осадка единичной толщины. Та­ков физический смысл понятия «удельное сопротивле­ние осадка».

В системе СИ размерность удельного сопротивле­ния осадка равна м-2, тогда размерности общего со­противления фильтра, сопротивлений осадка и филь­тровальной перегородки будут м-'.

Удельное сопротивление осадка является важней­шей и самой сложной физической величиной в теории фильтрования. Действие различных факторов на про­цесс фильтрования всегда может быть сведено к из­менению величины удельного сопротивления осадка под действием этих факторов. Все факторы, влияю­щие на процесс фильтрования суспензий, в общем слу­чае можно подразделить на гидродинамические и физико-химические. Гидродинамические факторы - это пористость осадка, размер частиц, их удельная по­верхность, сферичность и равномерность укладки. Физико-химические факторы — это степень коагуляций и пептизации твердых частиц суспензии; содержание в ней смолистых и коллоидных примесей, закynopивающих поры ocaдка; влияние элёктрокинетического потенциала, возникающего на границе раздела твердой и жидкой фаз и уменьшающего сечение пор; наличие сольватной оболочки на частицах осадка. Вследствие совместного проявления гидродинамиче­ских и физико-химических факторов невозможно вы­числить аналитически величину удельного сопротив­ления осадка как функцию всех указанных выше фак­торов, поэтому величину удельного сопротивления - осадка определяют опытным путем.

3.3. Уравнение фильтрования при постоянной разности давлений

Рассмотрим некоторые закономерности фильт­рования при постоянной разности давления с обра­зованием несжимаемого осадка на несжимаемой фильтровальной перегородке. Выражая в уравнении (9.8) скорость фильтрования согласно (9.1), разде­ляя переменные (удельный объем фильтрата и вре­мя) и интегрируя полученное дифференциальное урав­нение в пределах от 0 до g и от 0 до τ, получим сле­дующее расчетное уравнение фильтрования, известное как уравнение Рутса.

(9.10)

где «C» и «K» — размерные комплексы, составленные из постоянных для процесса фильтрования величин. Эти комплексы называют константами фильтрования и их значения равны

(9.11) и (9.12)

В выражения (9.11) и (9.12) входят удельное сопро­тивление осадка г и фильтровальной перегородки Rфп. Величину удельногосопротивленияосадка, как было указано ранее, не удается опреде­лить расчетным путем, и ее находят эксперименталь­но, не удается рассчитать и сопротивление фильтро­вальной перегородки, поэтому значения констант фильтрования определяют экспериментально. Про­цессы фильтрования, которые при прочих равных условиях отличаются только значениями перепада дав­ления, будут характеризоваться равными значениями константы К.

Переменными величинами в уравнении (9.10) яв­ляются время процесса фильтрования τ и удельный объем фильтрования . Решив это уравнение относительно удельного объема, можно для заданной продолжительности процесса фильтрования опреде­лить объем полученного фильтрата как V=gF. Урав­нение (9.10) позволяет решить и обратную задачу: при известном удельном объеме фильтрата рассчитать продолжительность процесса фильтрования.

3.4. Уравнение фильтрования при постоянной скорости процесса

При фильтровании с постоянной скоростью объем фильтрата, полученного на фильтре за время τ, можно определить как V=vфFτ, и тогда удельный объем фильтрата определится как

(9.13)

Подставив это значение удельного объема фильтрата в уравнение (9.8) и решив его относительно ∆р, по­лучим расчетное уравнение для определения перепа­да давления в фильтре к моменту времени фильтро­вания τ

(9.14)

Если ∆р задано, то на основании этого уравнения можно определить время, в течение которого будет достигнута эта разность давления при фильтровании с поcтоянной скоростью. Для выполнения расчетов с помощью уравнения (9.14) необходимо знать зна­чения удельного сопротивления осадка и сопротивле­ние фильтровальной перегородки.

3.5. Определение констант фильтрования, удельного сопротивления осадка и сопротивления фильтровальной перегородки

Поделив левую и правую части уравнения (9.10) gK, получим

(9.15)

Так как значения величин μ, r,x, Rфп и ∆р в процессе фильтрования при постоянной разности давления ос­таются неизменными, то уравнение (9.15) в коорди­натах τ/g и g является уравнением прямой линии, на­клоненной к оси абсцисс под углом, тангенс которого равен , и отсекающей на оси ординат (при g=0) отрезок, равный .

Для определения констант фильтрования проводят опыт по разделению суспензии с помощью филь­тра при постоянной разности давления. В течение опыта замеряют ряд соответствующих друг другу зна­чений g и τ. По данным опыта в координатах τ/g÷g наносят точки, через которые наилучшим образом проводят прямую линию, для которой определяют тангенс угла наклона α и отрезок А, отсекаемый ею на оси ординат. По этим данным рассчитывают зна­чения констант как

(9.16)

(9.17)

Зная константы фильтрования, можно на основании выражений (9.11) и (9.12) определить удельное со­противление осадка и сопротивление фильтровальной перегородки как

(9.18)

(9.19)

Определив удельное сопротивление осадка и зная х, можно рассчитать величину константы К для филь­трования при других значениях разности давления.

Описание лабораторной установки

Установка для проведения лабораторных исследо­ваний, процесса фильтрования (рис. 9.1) состоит из погружного элемента вакуум-фильтра 1, емкости для суспензии 2 с мешалкой 3, ресивера 9, вакуум-насо­са 10, мерной емкости для сбора фильтрата 7 и ваку­умметра 6. Отдельные части установки соединены между собой вакуумными резиновыми трубками, как показано на рис. 9.2. Для управления работой уста­новки служат краны 5 и 8.

Кран 11 служит для слива фильтрата из мерной емкости 7 после окончания работы. Мешалка 3 пред­назначена для перемешивания суспензии с целью предотвращения осаждения твердых частиц и образования осадка на дне емкости. Температура суспен­зии определяется с помощью термометра 4.

 

 

Рис. 9.1. Схема установки:

1 —элемент вакуум-фильтра; 2— емкость, 3—. мешалка; 4— термометр; 5. 8, II— краны; 6— вакуумметр; 7—мерная емкость для сбора фильтрата; 9—ресивер; 10—вакуум-насос

Рис. 9.2. Элемент вакуум-фильтра:

/—корпус; 2 решетка; 3—крышка; 4—филь­тровальная перегородка; 5—резиновая трубка

Элемент вакуум-фильтра (рис. 9.2) состоит из ци­линдрического корпуса 1, съемной решетки 2, нажимной крышки 3 и фильтровальной перегородки 4, в ка­честве которой используется фильтровальная ткань. С помощью вакуумной резиновой трубки 5 элемент вакуум-фильтра сообщается с емкостью для сбора фильтрата.

Перед началом работы внешним осмотром убе­диться в исправном состоянии всех элементов установки, проверить надежность крепления резиновых шлангов на штуцерах. Для предотвращения разбрыз­гивания жидкости мешалкой ее лопасти должны быть погружены в жидкость, но не касаться дна. Во время работы мешалки запрещается касаться ее вала.

До начала опыта получить инструктаж от лабо­ранта о порядке включения и выключения мешалки и вакуум-насоса и в присутствии лаборанта сделать их пробные включения и выключения.

К работе приступить только после получения на это разрешения от лаборанта.





Поделиться с друзьями:


Дата добавления: 2016-11-02; Мы поможем в написании ваших работ!; просмотров: 2573 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Жизнь - это то, что с тобой происходит, пока ты строишь планы. © Джон Леннон
==> читать все изречения...

2293 - | 2064 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.01 с.