Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Организация компонентов дыхательной цепи в виде четырех




комплексов: NADH-дегидрогеназы, сукцинатдегидрогеназы, цитохромов вс1, цитохромоксидазы. Роль коэнзима Q и цитохрома с в интеграции комплексов. Коллекторная функцияNAD+ и коэнзима Q в дыхательной цепи. Коэффициент окислительного фосфорилирования Р/О, Р/2е

Основные переносчики электронов дыхательной цепи организованы в 4 комплекса. Пространственное расположение компонентов таково, что оно облегчает их функционирование и соответствует возрастанию окислительно-восстановительного потенциала. Во внутренней мембране митохондрий выделяют 4 ферментных комплекса: NADH-дегидрогеназа (комплекс I), сукцинатдегидрогеназа (комплекс II), цитохромы 1 (комплекс III) и цитохромоксидаза (комплекс IV).

Три комплекса – I, III и IV – функционируют как зависящие от транспорта электронов протонные помпы, т.е. используя энергию электронов, эти комплексы обеспечивают перенос Н+ из матрикса в межмембранное пространство. В результате возникает протонный электрохимический потенциал. Комплекс II катализирует окисление сукцината убихиноном. При достижении определенного значения электрохимического потенциала происходит активация АТФ-синтазы (комплекс V), в ней открывается канал, через который протоны возвращаются из межмембранного пространства, а энергия ΔmН+ используется для синтеза АТР. Каждый из трех комплексов обеспечивает необходимый протонный градиент для активации АТФ-синтазы и синтеза 1 молекулы АТР.

Митохондриальная протон-транслоцирующая NADH-дегидрогеназа (первый пункт энергетического сопряжения) катализирует окисление NADH убихиноном. Реакция сопровождается трансмембранным переносом 4-х протонов при окислении одной молекулы NADH (2 электрона) и генерацией на сопрягающей мембране митохондрий разности электрохимических потенциалов. Комплекс I состоит из 46 субъединиц. В составе фермента обнаружено несколько редокс-компонентов, участвующих в передаче электронов с NADH на убихинон – FMN, несколько Fe-S-кластеров и прочно связанный убихинон (Рис.26.4).

На рис. 26.4. контуры поверхности белка приведены по данным реконструкции электронных микрофотографий фермента N.сrassa. Гидрофобный домен фермента погружен в липидный бислой. Расположение отдельных субъединиц в мембранной и периферической части фермента показано на основании результатов хроматографического разделения Комплекса I сердца быка на отдельные фрагменты.

Комплекс II (молекулярная масса 125 кДа) катализирует окисление сукцината убихиноном. Он состоит из 4 субъединиц: флавинопротеина, с молекулярной массой 70 кДа; железосерного белка, с молекулярной массой 30 кДа и двух гидрофобных заякоренных субъединиц по 7 и 17 кДа. Флавинопротеид содержит ковалентно связанный флавинмононуклеотид. Железосерные белки – это три различных железосерных кластера: [2Fe-2S] – центр S1; [3Fe-4S] – центр S2; [4Fe-4S] – центр S3. Две субъединицы являются цитохромом b и убихинон-связывающим белком.

Комплекс III имеет четыре редокс-центра: гемы bl и bh, связанные с цитохромом b; негемовый железосерный кластер FeSIII; включенный в соответствующий апопротеин; гем с, присоединенный к апопротеину цитохрома с1 (Рис.26.5). Наряду с переносчиками восстановительных эквивалентов в состав комплекса входит 8 полипептидов, лишенных простетических групп. Функционирует комплекс III по типу Q-цикла. Участвует в генерации протонного градиента, перенося 2 протона водорода из матрикса в межмембранное пространство.

 

 

Рис.26.4. Схематическое изображение структуры комплекса I

Цитохромоксидаза (комплекс IV) катализирует окисление восстановленного цитохрома с молекулярным кислородом. Эта реакция сопряжена с генерацией ΔμН. Восстановитель цитохромоксидазы цитохром с представляет собой очень стабильный гемопротеин, состоящий из 104 аминокислот и гема с. Гем ковалентно связан с апобелком (через SH-группы Cys-14, Cys-17). Цитохромоксидаза содержит 4 редокс-центра: 2 гема а -типа (а и а3) и 2 атома меди (CuA и CuB). Цитохромоксидаза содержит 3 крупные субъединицы, кодируемых митохондриальной ДНК, и еще 9 мелких субъединиц, синтезируемых в цитоплазме. Цитохромоксидаза частично погружена в мембрану, а частично экспонирована в воду. Гемы ориентированы перпендикулярно плоскости мембраны.

 

 

Рис.26.5. Комплекс III (bc1)

 

Электрон, отнятый от цитохрома с переносится непосредственно на Cuа. Двигаясь от поверхности в глубь мембраны, электрон переносится от Cuа к гему а и далее к комплексу гема а3 и Cub – последнему компоненту в дыхательной цепи, который восстанавливает О2.

Между комплексами электроны переносятся с помощью подвижных переносчиков: убихинона и цитохрома с. Двигаясь диффузно через липидный бислой мембраны, убихинон связывает комплексы I и III. Цитохром с выполняет аналогичную челночную функцию на участке между комплексами III и IV, диффундируя вдоль поверхности мембраны.

Функцию коллектора восстановительных эквивалентов в дыхательной цепи выполняют NAD+ и убихинон. Восстановительные эквиваленты могут поступать в дыхательную цепь на ее различных уровнях, в зависимости от редокс-потенциала окисляемого субстрата. Если он меньше, равен или немного больше -0,3 В (редокс-потенциал пары NADН/NAD+), в окислении такого субстрата участвует вся дыхательная цепь. Именно так окисляется большинство субстратов. Часто NAD+ служит непосредственным окислителем субстрата (ЦТК, окисление жирных кислот и т.д.). В редких случаях NADP, а не NAD служит окислителем субстрата. Образовавшийся NADPH может восстанавливать NAD+ в трансгидрогеназной реакции. Однако этого не происходит в энергезированной мембране, т.к. трансгидрогеназа служит потребителем ΔμН, действующим в направлении NADPH→NADP +. По этой причине NADPH обычно не подключается к дыхательной цепи, а используется в реакциях восстановительных биосинтезов.

Если редокс-потенциал субстрата значительно ниже, чем у NAD +, восстановительные эквиваленты переносятся на средний или конечный участок дыхательной цепи. Так окисляется один из субстратов цикла трикарбоновых кислот сукцинат (редокс-потенциал +0,03 В), а также ацил-СоА – субстрат первой оксидоредукции в системе β-окисления жирных кислот. Сукцинат и ацил-СоА-дегидрогеназы питают электронами дыхательную цепь на уровне комплекса bc1. В очень редких случаях редокс-потенциал окисляемого субстрата более положителен, чем у СоQ. Тогда восстановительные эквиваленты входят в цепь на уровне цитохрома с, так что только цитохромоксидазый ΔμН-генератор участвует в трансформации энергии. Пример – аскорбиновая кислота.

Мерой эффективности дыхания как поставщика энергии для синтеза АТР, предложенной в 1939 г. В.А. Белицером и Е.Т. Цыбаковой, может служить отношение количества синтезированного АТР или эстерифицированного фосфата к количеству потребляемого кислорода (АТР/O, P/O, Р/2е). Этот критерий, называемый коэффициентом фосфорилирования, отражает количество молей АТР, образованных при восстановлении 1 атома кислорода до Н2О дыхательной цепи (т.е. при прохождении 2 электронов по дыхательной цепи). Для митохондрий, окисляющих NAD-зависимые субстраты, сукцинат или аскорбат, экспериментально измеренные величины Р/O оказываются соответственно 3, 2, 1. Эти величины близки величинам, рассчитанным теоретически.

При участии АТР/АDP-транслоказы АТР транспортируется в цитоплазму в обмен на ADP. В цитоплазме АТР используется для совершения работы. При увеличении расхода АТР в клетке увеличивается поступление ADP в митохондрии. Повышение концентрации ADP (субстрата АТФ-синтазы) увеличивает скорость синтеза АТР. При этом увеличивается скорость дыхания. Таким образом, скорость синтеза АТР точно соответствует потребностям клетки в энергии. Ускорение окислительного фосфорилирования и дыхания при повышении концентрации ADP называется дыхательным контролем.

В реакциях дыхательной цепи часть энергии не превращается в энергию макроэргических связей АТР, а рассеивается в виде тепла. Тепло, освобождающееся в реакциях энергетического обмена, участвует в поддержке температуры тела у теплокровных животных. Некоторые липофильные вещества (жирные кислоты, динитрофенол и др.) могут переносить ионы водорода через внутреннюю мембрану митохондрий, минуя канал АТР-синтазы, убирая таким образом протонный градиент. Они разобщают процесс переноса электронов по дыхательной цепи и синтез АТР и поэтому называются разобщителями. При действии разобщающих факторов коэффициент Р/О снижается, часть энергии выделяется в виде тепла.

 





Поделиться с друзьями:


Дата добавления: 2016-11-02; Мы поможем в написании ваших работ!; просмотров: 1304 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Не будет большим злом, если студент впадет в заблуждение; если же ошибаются великие умы, мир дорого оплачивает их ошибки. © Никола Тесла
==> читать все изречения...

2539 - | 2234 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.022 с.