ВОПРОС№23 Окружность
Окружность. Центр окружности. Радиус окружности.
Уравнение окружности. Уравнение касательной к окружности.
Условие касания прямой и окружности.
Окружностью (рис.1) называется геометрическое место точек, равноудалённых от данной точки О, называемой центром окружности, на расстояние R. Число R > 0 называется радиусом окружности.
Уравнение окружности радиуса R с центром в точке О (х 0, у 0) имеет вид:
(х – х 0) 2 + (у – у 0) 2 = R 2.
Если центр окружности совпадает с началом координат, то уравнение окружности упрощается:
х 2 + у 2 = R 2.
Пусть Р (х 1, у 1) – точка окружности (рис.1), тогда уравнение касательной к окружности в данной точке имеет вид:
(х 1 – х 0) (х – х 0) + (у 1 – у 0) (у – у 0) = R 2.
Условие касания прямой y = m x + k и окружности х 2 + у 2 = R 2:
k 2 / (1 + m 2 )= R 2.
ВОПРОС№24,25,26
Эллипс.
Определение 11.2. Эллипсом называется множество точек плоскости, для которых сумма расстояний до двух фиксированных точек F 1 и F 2 этой плоскости, называемых фокусами, есть величина постоянная.
Замечание. При совпадении точек F 1 и F 2 эллипс превращается в окружность.
Выведем уравнение эллипса, выбрав декартову систему
у М(х,у) координат так, чтобы ось Ох совпала с прямой F 1 F 2, начало
r1 r2 координат – с серединой отрезка F 1 F 2. Пусть длина этого
отрезка равна 2 с, тогда в выбранной системе координат
F1 O F2 x F 1(- c, 0), F 2(c, 0). Пусть точка М(х, у) лежит на эллипсе, и
сумма расстояний от нее до F 1 и F 2 равна 2 а.
Тогда r 1 + r 2 = 2 a, но ,
поэтому Введя обозначение b ² = a ²- c ² и проведя несложные алгебраические преобразования, получим каноническое уравнение эллипса: (11.1)
Определение 11.3. Эксцентриситетом эллипса называется величина е=с/а (11.2)
Определение 11.4. Директрисой Di эллипса, отвечающей фокусу Fi, называется прямая, расположенная в одной полуплоскости с Fi относительно оси Оу перпендикулярно оси Ох на расстоянии а/е от начала координат.
Замечание. При ином выборе системы координат эллипс может задаваться не каноническим уравнением (11.1), а уравнением второй степени другого вида.
Свойства эллипса:
1) Эллипс имеет две взаимно перпендикулярные оси симметрии (главные оси эллипса) и центр симметрии (центр эллипса). Если эллипс задан каноническим уравнением, то его главными осями являются оси координат, а центром – начало координат. Поскольку длины отрезков, образованных пересечением эллипса с главными осями, равны 2 а и 2 b (2 a >2 b), то главная ось, проходящая через фокусы, называется большой осью эллипса, а вторая главная ось – малой осью.
2) Весь эллипс содержится внутри прямоугольника
3) Эксцентриситет эллипса e < 1.
Действительно,
4) Директрисы эллипса расположены вне эллипса (так как расстояние от центра эллипса до директрисы равно а/е, а е <1, следовательно, а/е>a, а весь эллипс лежит в прямоугольнике )
5) Отношение расстояния ri от точки эллипса до фокуса Fi к расстоянию di от этой точки до отвечающей фокусу директрисы равно эксцентриситету эллипса.
Доказательство.
Расстояния от точки М(х, у) до фокусов эллипса можно представить так:
Составим уравнения директрис:
(D 1), (D 2). Тогда Отсюда ri / di = e, что и требовалось доказать.
Гипербола.
Определение 11.5. Гиперболой называется множество точек плоскости, для которых модуль разности расстояний до двух фиксированных точек F 1 и F 2 этой плоскости, называемых фокусами, есть величина постоянная.
Выведем каноническое уравнение гиперболы по аналогии с выводом уравнения эллипса, пользуясь теми же обозначениями.
| r1 - r2| = 2 a, откуда Если обозначить b ² = c ² - a ², отсюда можно получить
- каноническое уравнение гиперболы. (11.3)
Определение 11.6. Эксцентриситетом гиперболы называется величина е = с / а.
Определение 11.7. Директрисой Di гиперболы, отвечающей фокусу Fi, называется прямая, расположенная в одной полуплоскости с Fi относительно оси Оу перпендикулярно оси Ох на расстоянии а / е от начала координат.
Свойства гиперболы:
1) Гипербола имеет две оси симметрии (главные оси гиперболы) и центр симметрии (центр гиперболы). При этом одна из этих осей пересекается с гиперболой в двух точках, называемых вершинами гиперболы. Она называется действительной осью гиперболы (ось Ох для канонического выбора координатной системы). Другая ось не имеет общих точек с гиперболой и называется ее мнимой осью (в канонических координатах – ось Оу). По обе стороны от нее расположены правая и левая ветви гиперболы. Фокусы гиперболы располагаются на ее действительной оси.
2) Ветви гиперболы имеют две асимптоты, определяемые уравнениями
и .
3) Наряду с гиперболой (11.3) можно рассмотреть так называемую сопряженную гиперболу, определяемую каноническим уравнением
, (11.3`)
для которой меняются местами действительная и мнимая ось с сохранением тех же асимптот.
4) Эксцентриситет гиперболы e > 1.
5) Отношение расстояния ri от точки гиперболы до фокуса Fi к расстоянию di от этой точки до отвечающей фокусу директрисы равно эксцентриситету гиперболы.
Доказательство можно провести так же, как и для эллипса.
Парабола.
Определение 11.8. Параболой называется множество точек плоскости, для которых расстояние до некоторой фиксированной точки F этой плоскости равно расстоянию до некоторой фиксированной прямой. Точка F называется фокусом параболы, а прямая – ее директрисой.
у Для вывода уравнения параболы выберем декартову
систему координат так, чтобы ее началом была середина
d M(x,y) перпендикуляра FD, опущенного из фокуса на директри-
r су, а координатные оси располагались параллельно и
перпендикулярно директрисе. Пусть длина отрезка FD
D O F x равна р. Тогда из равенства r = d следует, что
поскольку
Алгебраическими преобразованиями это уравнение можно привести к виду: y ² = 2 px, (11.4)
называемому каноническим уравнением параболы. Величина р называется параметром параболы.
Свойства параболы:
1) Парабола имеет ось симметрии (ось параболы). Точка пересечения параболы с осью называется вершиной параболы. Если парабола задана каноническим уравнением, то ее осью является ось Ох, а вершиной – начало координат.
2) Вся парабола расположена в правой полуплоскости плоскости Оху.
Замечание. Используя свойства директрис эллипса и гиперболы и определение параболы, можно доказать следующее утверждение:
Множество точек плоскости, для которых отношение е расстояния до некоторой фиксированной точки к расстоянию до некоторой прямой есть величина постоянная, представляет собой эллипс (при e <1), гиперболу (при e >1) или параболу (при е =1).
Приведение уравнения второго порядка к каноническому виду.
Определение 11.9. Линия, определяемая общим уравнением второго порядка
, (11.5)
называется алгебраической линией второго порядка.