При построении проекции необходимо помнить, что ортогональной проекцией точки на плоскость называется основание перпендикуляра, опущенного из данной точки на эту плоскость. На рисунке 2.1. показана точка А и ее ортогональные проекции А1 и А 2.
Точку А1 называют горизонтальной проекцией точки А, точка А2 - ее фронтальной проекцией. Проекции точки всегда расположены на прямых, перпендикулярных оси X12 и пересекающих эту ось в одной и той же
точке Аx.
А) модель
Б) эпюр
Рисунок. 2.1. Точка в системе двух плоскостей проекций
Справедливо и обратное, т. е. Если на плоскостях проекций даны точки А1 и А2 расположенные на прямых, пересекающих ось x12 в точке Аx под прямым углом, то они являются проекцией некоторой точки А.
На эпюре Монжа проекции А1 и А2 окажутся расположенными на одном перпендикуляре к оси x12. При этом расстояние А1Аx -от горизонтальной проекции точки до оси равно расстоянию от самой точки А до плоскости П2, а расстояние А2Аx - от фронтальной проекции точки до оси равно расстоянию от самой точки А до плоскости П1.
Прямые линии, соединяющие разноименные проекции точки на эпюре, называются линиями проекционной связи.
А) модель
Б) эпюр
Рисунок 2.3. Точка в системе трех плоскостей проекций
Модель трех плоскостей проекций показана на рисунке 2.3. Третья плоскость, перпендикулярная и П1, и П2, обозначается буквой П3 и называется профильной.
Проекции точек на эту плоскость обозначаются заглавными буквами или цифрами с индексом 3.
Плоскости проекций, попарно пересекаясь, определяют три оси 0x, 0y и 0z, которые можно рассматривать как систему декартовых координат в пространстве с началом в точке 0.
Три плоскости проекций делят пространство на восемь трехгранных углов - октантов. Как и прежде, будем считать, что зритель, рассматривающий предмет, находится в первом октанте.
Для получения эпюра точки в системе трех плоскостей проекций плоскости П1 и П3 вращают, как показано на рисунке 2.4, до совмещения с плоскостью П2. При обозначении осей на эпюре отрицательные полуоси обычно не указывают. Если существенно - только само изображение предмета, а не его положение относительно плоскостей проекций, то оси на эпюре не показывают.
Координатами называют числа, которые ставят в соответствие точке для определения ее положения в пространстве или на поверхности. В трехмерном пространстве положение точки устанавливают с помощью прямоугольных декартовых координат x, y и z (абсцисса, ордината и аппликата).
Рисунок 2.4. Получение эпюра
Если точка принадлежит хотя бы одной плоскости проекций, она занимает частное положение относительно плоскостей проекций. Если точка не принадлежит ни одной из плоскостей проекций, она занимает общее положение.
Лекция №3
Прямая линия
Прямая линия - одно из основных понятий геометрии. При систематическом изложении геометрии прямая линия обычно принимается за одно из исходных понятий, которое лишь косвенным образом определяется аксиомами геометрии. Если основой построения геометрии служит понятие расстояния между двумя точками пространства, то прямую линию можно определить как линию, вдоль которой расстояние между двумя точками является кратчайшим.
Прямая линия в линейной алгебре - линия первого порядка. Общее уравнение прямой:
Ах+Ву+С=0,
где А, В и С - любые постоянные.