Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Уравнения Максвелла в среде без учёта пространственно-временной дисперсии

Уравнения Максвелла для стационарного электромагнитного поля в среде.

Поле стационарно, если оно не зависит явно от времени, т.е.

Уравнения Максвелла в этом случаем принимают вид:

+ связи:

В электростатике используются первое и третье уравнения, а в магнитостатике второе и четвертое.

Связь полей с потенциалами:

 

 

Объёмная плотность точечного заряда.

 

Рассмотрим систему из точеченого заряда

Здесь возникает необходимость использовать -функцию.

Тогда:

Это соответствует случаю, когда заряд помещён в начало координат, а плотность заряда ищется в точке, с радиус-вектором .

Если же заряд помещён не в начало отсчёта, то плотность заряда перепишется в следующем виде:

В случае системы точечных зарядов имеем:

 

Для изображения плотности точечного источника всегда используется -функция.

Волновое уравнение в случае вакуума.

 

 

Аналогично уравнение получаем для :

Здесь будем использовать калибровку поперечных волн (), т.к. в вакууме электромагнитные волны плоские поперечные волны. Тогда:

 

Закон сохранения заряда.

 

Запишем уравнение Максвелла: . Подействуем на него оператором скалярно. Получаем:

Но дивергенция всякого ротора равна нулю, поэтому в результате получаем:

 

- уравнение непрерывности

Проинтегрируем обе части этого уравнения по некоторому объёму:

 

, где -единичный вектор нормали

определяет количество заряда выносимого через поверхность объёма. Если - острый, то заряд выносится из объёма и -положителен. Если тупой, то заряд приходит в объём и - имеет знак минус.

Типы калибровок.

 

Перепишем уравнения Максвелла:

 

1.Калибровка Лоренца

 

Тогда уравнение первое уравнение Максвелла перепишется в следующем виде:

- уравнение Даламбера

Это уравнение есть – неоднородное дифференциальное уравнение в частных производных.

- оператор гиперболического типа.

Для 4-го уравнения Максвелла имеем:

Все, имеющие физический смысл, результаты должны быть градиентно-инвариантыми:

В силу калибровки Лоренца получаем:

Т.е. функция должна удовлетворять однородному уравнению Даламбера (его ещё называют волновым уравнением)

 

2.Калибровка Кулона

- калибровка Кулона

Уравнение (А) перепишется в следующем виде:

- уравнение Пуассона.

Если же (в пустоте), то уравнение Пуассона принимает вид:

-уравнение Лапласа.

 

получаем, что функция должна удовлетворять уравнению:

3.Калибровка поперечных волн

Полагаем есть функция только координат.

Значит функция должна удовлетворять уравнению:

 

 

 

Уравнения Максвелла в среде без учёта пространственно-временной дисперсии.

 

 

 

С помощью этих уравнений можно описывать электромагнитное поле в среде. В среде будем ставить индекс «»=микро

 

 

включает в себя как связанные, так и свободные заряды в веществе. Каждой точке пространства ставится в соответствие функция . Это значит, что мы заменяем реальную среду моделью – сплошной средой, т.е. мы свойства разных точек «размазываем» по пространству. Существуют следующие способы описания сплошной среды на основе реальной среды:

1. Усреднение по некоторому физическому объёму и времени .

2. Статистическое усреднение. Считаем что у нас есть макроскопически-идентичный ансамбль систем(т.е. все внешние условия одинаковы). Здесь производятся измерения для отдельных ансамблей, а потом происходит усреднение. Этот способ более предпочтителен.

Усреднение будем обозначать символами «< >». Отметим, что усреднение коммутативно с дифференциальными операторами.

Итак, усредняем:

 

 

Среда под действием внешнего электромагнитного поля поляризуется, т.е. реагирует на внешнее воздействие. В случае, когда отсутствует пространственная дисперсия, поляризация характеризуется векторами электрической и магнитной поляризации . Можно показать, что и выражаются через :

 

Введём обозначения: ;

Перенесём второе слагаемое из правой части в левую и объединим его с :

 

 

Итак, уравнения Максвелла для среды имеют вид:

 

 

 



<== предыдущая лекция | следующая лекция ==>
Источники по истории и врачеванию древней Индии | Психологические предпосылки редактирования. (К.М. Накорякова)
Поделиться с друзьями:


Дата добавления: 2016-10-30; Мы поможем в написании ваших работ!; просмотров: 284 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Лаской почти всегда добьешься больше, чем грубой силой. © Неизвестно
==> читать все изречения...

2390 - | 2260 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.01 с.