Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Для расчета действующего значения тока воспользуемся формулой




(1)

3. Определим полное сопротивление цепи, зная, что

 

 

4. Используя формулу (1) определим действующее значение тока в цепи

5. Т. к. емкостное сопротивление больше индуктивного, то для расчета угла сдвига фаз напряжения и тока воспользуемся векторной диаграммой

 
 

из нее видно, что напряжение отстает от тока на угол φ. Используя тригонометрические соотношения, определим

следовательно угол

6. Определяем напряжение на конденсаторе и катушке

 

 

6. Определяем активную мощность

 

7. Определяем реактивную мощность

.

 

Ответ: I = 13,3 А; UL=292 В; UC=347 В; P=1261 Вт; Q=-729 Вар; φ = -27о (0,53 рад).

Пример 5. Определить динамическое и статическое сопротивления перехода К-Э транзистора МП 40 в электронном фильтре, если напряжение в рабочей точке Uкэр= 25 В, при этом ΔUкэ= 2В, Iб = 0,2 мА.

Дано: Uкэр = 25 В;

ΔUкэ= 2В;

Iб = 0,2 мА.

 
 

Найти: Rдин =? Rст =?

 

Решение: 1.) Находим статическое сопротивление. По выходной ВАХ (Рис.2) определяем Iкр в рабочей ΔUкэ = 2 В. точке. Для чего, проводим вертикальную линию, соответствующую Iб = 0,2 мА Uкэр = 20 В до пересечения с ВАХ (Iб = 0,2мА), это и есть РТ, проводим горизонтальную линию до пересечения с осью тока и определяем величину:

Iкр = 6 мА.

2.) Определяем Rст:

.

3.) По выходной ВАХ определяем ΔIкр (аналогично действиям в п.1).

ΔIкр = 0,8 мА.

4.) Определяем Rдин:

 
 

.

Рис. 1. Рис. 2.

Ответ: Rдин = 2500 Ом; Rст = 4167 Ом.

Пример 6. Определить коэффициент усиления транзистора МП 40, если ток базы Iб=1 мА, а напряжение Uкэ=10 В.

Дано: Iб = 1 мА

Uкэ = 10 В

Найти: h21 =?

Решение: 1.) На выходной ВАХ (Рис.2) из точки, соответствующей Uкэ = 10 В, проводим вертикальную линию до пересечения с кривой, соответствующей Iб = 1 мА. Из точки пересечения проводим горизонтальную линию до пересечения с осью тока Iкэ и определяем

Iкэ = 22 мА

2.) Определяем коэффициент усиления транзистора по формуле

Ответ: h21 = 22.

Рис. 3

Пример 7. Определить, какое сопротивление нужно включить в базовую цепь транзистора МП 40, входящего в усилительный каскад, чтобы при напряжении Uвх = 4 В, базовый ток не превышал Iб= 0,75 мА, при этом напряжение Uкэ= 5 В.

 

Дано: Uвх = 4 В Решение: 1.) Нарисуем усилительный каскад (рис.3) и

Uкэ = 5 В определим формулу, из которой найдем сопротивление

Iб = 0,75 мА Rб:

 

Найти: Rб =? 2.) По входной ВАХ (Рис.1), соответствующей Uкэ = 5 В, определим Uбэ.

Для этого из точки, соответствующей Iб =0,75 мА, проведем горизонтальную линию до пересечения с кривой (Uкэ=5 В). Из этой точки опустим перпендикулярную линию на ось напряжения и определяем

Uбэ = 0,3 В.

3.) Из формулы в п.1 определяем Rб

 

Ответ: Rб = 4933 Ом.

Пример 8. Определить намагничивающую силу катушки, расположенной на среднем стержне, с тем чтобы в нем получить магнитную индукцию В1 = 14000 гс. Форма сердечника на чертеже (Рис. 5), размеры сердечника: а = 400 мм; b = 400 мм; с = 75 мм; d = 75 мм; e = 120 мм. В местах стыка воздушный зазор = 0,1 мм. Материал сердечника – электротехническая сталь.

 

Дано: В1 = 14000 гс

а = 400 мм

b = 400 мм

с = 75 мм

d = 75 мм

e = 120 мм

------------------------

Найти: I∙w=?

Решение: Разделим сердечник по оси АБ на две симметричные части, проведем по одной из них среднюю магнитную линию.

1.) Пользуясь чертежом, определим длину линии в каждом участке магнитной цепи:

l1 = a – c – d = 400 – 75 – 75 = 250 мм;

l2 = b/2 – e/4 - c/2 + 2 * d/2 = 400/2 – 120/4 - 75/2 + 2 * 75/2 = 200 – 30 - 37.5 + 75 = 207.5 мм;

l3 = (a – d – c) + l2 = (400 – 75 – 75) +207.5 = 250 +207.5 = 457.5 мм.

2.) Найдем значение магнитной индукции для 2-го и 3-го участков, учитывая, что магнитная индукция в 1-м участке В1 = 14000 гс:

3.) Найдем значение магнитной индукции для воздушных зазоров:

Т. к. площадь поперечного сечения воздушных зазоров а и б соответствует площади поперечного сечения сердечников в соответствующих местах, следовательно магнитная индукция:

Ва = 14000 гс; Вб = 11200 гс.

4.) Используя кривые намагничивания (рис. 4), определим значения напряженности магнитного поля для соответствующих участков, имея в виду, что стержни изготовлены из электротехнической стали:

Н1 = 20 а/см; Н2 = 6 а/см; Н3 = 6 а/см;

5.) Определим напряженность магнитного поля для воздушных зазоров:

 

 

Рис. 4. Кривые намагничивания для стали и чугуна

Н = 0,8*Ва = 0,8*14000 = 11200 а/см; Н = 0,8*Вб = 0,8*11200 = 8960 а/см

6.) Определяем намагничивающую силу для каждого участка

7.) Определяем намагничивающую силу катушки

Ответ: I∙w= 1100,6 а.

 

Рис. 5

КОНТРОЛЬНЫЕ ЗАДАНИЯ

1. Используя методы наложения, контурных токов и узло­вых напряжений, определить токи ветвей в цепи, схема которой соответствует рис. 1, если E = 15 В, a R = 2 Ом. Составить уравнение баланса мощностей.

       
   
 

2. Используя методы наложения, контурных токов и узловых напряже-


Рис. 1 Рис. 2 Рис. 3

 

ний, определить токи ветвей в цепи, схема которой соответствует рис. 2, если E = 30 В, a R = 5 Ом. Составить уравнение баланса мощностей.

 
 


3. В электрической цепи выделены активный двухполюсник υα и ветвь, в которую включен амперметр (рис. 3). При обоих разомкнутых ключах амперметр

 

Рис. 4 Рис. 5 Рис.6

показывает 2 А. Если первый ключ К1 замкнут, а второй К2 разомкнут, то пока- зание ампер­метра 3 А. Найти показание амперметра при обоих замкнутых ключах, если сопротивление резисторов R1 = R 2 = 10 Ом.

4. Определить токи ветвей и составить баланс мощностей для электрической цепи, схема которой приведена на рис. 4, используя метод контурных токов. Эдс источников и сопротивле­ния резисторов соответственно равны: E1 = 50 В; E2 = 200 В; E3 = 55 В и R1 = R2 = R4 = 10 Ом; R3 = 15 Ом; R5 = R6 = 5 Ом.

5. В электрической цепи, схема которой приведена на рис. 5, известны два втекающих тока I1 = 4 А и I2 = 2 А, а также другие параметры цепи: E1 = 10 В; E2 =18 В и R1 = 2 Ом; R2 = 3 Ом; R3 = 5 Ом. Определить токи всех резисторов цепи.

6. Применяя один из методов расчета сложных цепей, найти все токи в электрической цепи, схема которой приведена на рис. 6. Параметры элементов цепи равны: E1 = 30 В; Е2 = 8 В; E5 = 16 В и R1 = 2 Ом; R2 = R3 = R4 = R5 = 4 Ом.

7. Используя метод узлового напряжения, определить токи генераторов в электрической цепи, схема которой приведена на рис. 7. Параметры элементов цепи следующие: E1 = 230 В; E2 =220 В; E3 =160 В и R1 = 2 Ом; R2 = R3 = 4 Ом; R4 = 20 Ом.

8. Рассчитать с помощью метода узлового напряжения то­ки ветвей электрической цепи с двумя узлами рис. 8. Со­ставить уравнение баланса мощностей, если параметры элемен­тов цепи E1 = 34 В; E2 = 24 В и R1 = 1 Ом; R2 =2 Ом; R3 = R4 = 4 Ом.

9. Определить выходное напря­жение в схеме линейного

           
     
 
 

Рис. 7 Рис. 8 Рис. 9

потенциомет­ра, приведенной на рис. 9, если под­вижный контакт его находится по сере­дине. Параметры элементов цепи сле­дующие: U1 = 30 Β; U2 = 25 В; U3 = 6 В и R1 = R2 = R3 = 1 кОм; переменное сопротивление Rпер = 2 кОм.

  1.  
     

    Мостовая схема (рис. 10) с сопротивлениями плеч R1 = R2 =4 Ом; Рис. 10

R3 =5 Ом; R4 = 3 Ом подключена к источни­ку эдс Е = 30 В с внутренним сопротивлением R6 = 1 Ом. Найти токи источника при коротком замыкании и разрыве диагонали моста.

11. Нагревательный прибор сопротивлением 10 Ом включен в сеть переменного тока с напряжением 127 В. Определить: ток, мощность прибора и какое количество энергии потребляет прибор за 30 минут.

12. Катушку, активным сопротивлением которой можно пренебречь, включили в сеть переменного тока напряжением 110 В частотой 60 Гц и в ней установился ток 1,2 А. Определить индуктивность катушки.

13. Определить ток в цепи и наибольшее значение мгновенной мощности в электрической лампе номинальной мощностью 60 Вт, включенной в сеть переменного тока с напряжением 36 В.

14. В сеть с переменным напряжением 220 В включается электрическая лампа, номинальное напряжение которой 127 В и мощность 40 Вт. Для "погашения" части напряжения последовательно с лампой включается конденсатор. Определить необходимую емкость конденсатора, если частота 50 Гц.

15. Электрический чайник мощностью 1,2 кВт включен в сеть переменного тока с напряжением 220 В. Определить сопротивление нагревательного элемента и какое количество энергии потребляет чайник за 10 минут.

16. Определить мощность электрической лампы, включенной в сеть переменного тока напряжением 220 В и ток в цепи, если за 60 минут работы потребляется 120 Вт•час электроэнергии.

17. В сеть с переменным напряжением 127 В частотой 60 Гц, для "погашения" части напряжения, последовательно с лампой включается конденсатор емкостью 8,2 мкФ, при этом в цепи протекает ток 0,01 А. Определить номинальное напряжение и мощность лампы.

18. В сеть с переменным напряжением 220 В включен фен мощностью 300 Вт, мощность двигателя составляет 50 Вт. Определить сопротивление нагревательного элемента и какое количество энергии потребляет фен за 20 минут.

19. Магнитный замок, включенный в сеть переменного тока напряжением 12 В, за 5 секунд потребляет 50 Вт•час электроэнергии. Определить мощность замка и ток протекающий по обмотке.

20. Соленоид с подвижным сердечником включен в сеть с напряжением 220 В. За время включения 3 секунды он потребляет 120 Вт•час электроэнергии. Определить мощность и ток протекающий по соленоиду.

21. Последовательно соединенные катушка с активным сопротивлением 6 Ом и индуктивностью 0,02 Гн и конденсатор с емкостью 8,2 мкФ включены в сеть напряжением 12 В и частотой 50 Гц. Определить ток в цепи, напряжение на катушке и на конденсаторе, активную и реактивную мощности, угол сдвига фаз между напряжением и током в цепи, изобразить векторную диаграмму напряжений.

22. Напряжение на, последовательно соединенных, катушке, с активным сопротивлением 6 Ом, UL = 100 В и конденсаторе UC = 200 В. Определить ток в цепи, индуктивность катушки и емкость конденсатора, активную и реактивную мощности, угол сдвига фаз между напряжением и током в цепи, если напряжение сети 220 В, частота 400 Гц. Изобразить векторную диаграмму напряжений.

23. Напряжение на, последовательно соединенных, катушке, с активным сопротивлением 8 Ом, UL = 50 В и конденсаторе UC = 100 В. Определить ток в цепи, индуктивность катушки и емкость конденсатора, активную и реактивную мощности, угол сдвига фаз между напряжением и током в цепи, если напряжение сети 220 В, частота 100 Гц. Изобразить векторную диаграмму напряжений.

24. Последовательно соединенные катушка с активным сопротивлением 6 Ом и индуктивностью 0,06 Гн и конденсатор с емкостью 9,1 мкФ включены в сеть напряжением 48 В и частотой 50 Гц. Определить ток в цепи, напряжение на катушке и на конденсаторе, активную и реактивную мощности, угол сдвига фаз между напряжением и током в цепи, изобразить векторную диаграмму напряжений.

25. Напряжение на, последовательно соединенных, катушке, с активным сопротивлением 10 Ом, UL = 48 В и конденсаторе UC = 68 В. Определить ток в цепи, индуктивность катушки и емкость конденсатора, активную и реактивную мощности, угол сдвига фаз между напряжением и током в цепи, если напряжение сети 127 В, частота 60 Гц. Изобразить векторную диаграмму напряжений.

26. Последовательно соединенные катушка с активным сопротивлением 6 Ом и индуктивностью 0,07 Гн и конденсатор с емкостью 6,8 мкФ включены в сеть напряжением 36 В и частотой 60 Гц. Определить ток в цепи, напряжение на катушке и на конденсаторе, активную и реактивную мощности, угол сдвига фаз между напряжением и током в цепи, изобразить векторную диаграмму напряжений.

27. Напряжение на, последовательно соединенных, катушке, с активным сопротивлением 3 Ом, UL = 30 В и конденсаторе UC = 100 В. Определить ток в цепи, индуктивность катушки и емкость конденсатора, активную и реактивную мощности, угол сдвига фаз между напряжением и током в цепи, если напряжение сети 127 В, частота 400 Гц. Изобразить векторную диаграмму напряжений.

28. Последовательно соединенные катушка с активным сопротивлением 6 Ом и индуктивностью 0,03 Гн и конденсатор с емкостью 4,7 мкФ включены в сеть напряжением 36 В и частотой 400 Гц. Определить ток в цепи, напряжение на катушке и на конденсаторе, активную и реактивную мощности, угол сдвига фаз между напряжением и током в цепи, изобразить векторную диаграмму напряжений.

29. Последовательно соединенные катушка с активным сопротивлением 12 Ом и индуктивностью 0,07 Гн и конденсатор с емкостью 6,8 мкФ включены в сеть напряжением 220 В и частотой 50 Гц. Определить ток в цепи, напряжение на катушке и на конденсаторе, активную и реактивную мощности, угол сдвига фаз между напряжением и током в цепи, изобразить векторную диаграмму напряжений.

30. Напряжение на, последовательно соединенных, катушке, с активным сопротивлением 10 Ом, UL = 100 В и конденсаторе UC = 150 В. Определить ток в цепи, индуктивность катушки и емкость конденсатора, активную и реактивную мощности, угол сдвига фаз между напряжением и током в цепи, если напряжение сети 220 В, частота 60 Гц. Изобразить векторную диаграмму напряжений.

31. В промышленной трехфазной сети с линейным напряжением 220 В частотой 50 Гц в качестве фаз нагрузок используются три одинаковых конденсатора СА = СВ = СС =100 мкф, соединенные последовательно с резисторами RА = 25 Ом, RВ = 33 Ом, RС = 10 Ом. Определить токи фаз нагрузки и ток нулевого провода. Изобразить электрическую схему подключенных элементов при соединении звездой.

32. К промышленной трехфазной сети с линейным напряжением 380 В частотой 50 Гц подключены фазы нагрузки с активными сопротивлениями RА = RВ = RС = 15 Ом и коэффициентами мощности cos φА = 0,7; cos φВ = 0,81; cos φС = 0,67. Определить токи фаз нагрузки и нулевого провода. Изобразить электрическую схему подключенных элементов при соединении звездой.

33. Трехфазная нагрузка состоит из трех соединенных треугольником катушек, индуктивность которых L1 = L2 = L3 = 0,2 Гн. Найти напряжения фаз нагрузки и линейные токи, если фазный ток равен 2 А, а частота 50 Гц. Изобразить электрическую схему подключенных элементов.

34. Трехфазная нагрузка состоит из трех соединенных треугольником конденсаторов, емкость которых С1 = С2 = С3 = 100 мкф. Найти токи конденсаторов, если линейная эдс равна 220 В, а частота 50 Гц. Изобразить электрическую схему подключенных элементов.

35. К трехфазной сети с линейным напряжением 220 В частотой 50 Гц подключена симметричная нагрузка, активное сопротивление которой в каждой фазе 6 Ом. Найти токи фаз нагрузки при соединении фаз генератора и нагрузки треугольником. Изобразить электрическую схему подключенных элементов.

36. В промышленной трехфазной сети с линейным напряжением 127 В, частотой 60 Гц в качестве фаз нагрузок используются три одинаковых конденсатора СА = СВ = СС =68 мкф, соединенные последовательно с резисторами RА = 12 Ом, RВ = 43 Ом, RС = 15 Ом. Определить токи фаз нагрузки и ток нулевого провода. Изобразить электрическую схему подключенных элементов при соединении звездой.

37. К промышленной трехфазной сети с линейным напряжением 380 В частотой 60 Гц подключены фазы нагрузки с активными сопротивлениями RА = RВ = RС = 18 Ом и коэффициентами мощности cos φА = 0,707; cos φВ = 0,81; cos φС = 0,63. Определить токи фаз нагрузки и нулевого провода. Изобразить электрическую схему подключенных элементов при соединении звездой.

38. Трехфазная нагрузка состоит из трех соединенных треугольником катушек, индуктивность которых L1 = L2 = L3 = 0,25 Гн. Найти напряжения фаз нагрузки и линейные токи, если фазный ток равен 1,8 А, а частота 60 Гц. Изобразить электрическую схему подключенных элементов.

39.

       
   
 

Трехфазная нагрузка состоит из трех соединенных треугольником конденсаторов, емкость которых С1 = С2 = С3 = 120 мкф. Найти токи конденсаторов, если линейная эдс равна 220 В, а частота 60 Гц. Изобразить электрическую схему подключенных элементов.

Рис. 11 Рис.12

 

40. К трехфазной сети с линейным напряжением 220 В частотой 60 Гц подключена симметричная нагрузка, активное сопротивление которой в каждой фазе 8 Ом. Найти токи фаз нагрузки при соединении фаз генератора и нагрузки треугольником. Изобразить электрическую схему подключенных элементов.

41. Определить динамическое и статическое сопротивления перехода К-Э транзистора КТ603 в электронном фильтре, если напряжение в рабочей точке Uкэр= 10 В, при этом ΔUкэ = 2В, Iб = 2 мА.

42. Определить коэффициент усиления транзистора КТ603, если ток базы Iб = 1,5 мА, а напряжение Uкэ = 10 В.

43. Определить, какое сопротивление нужно включить в базовую цепь транзистора КТ603, входящего в усилительный каскад, чтобы при напряжении Uвх = 4 В, базовый ток не превышал Iб = 4 мА, при этом напряжение Uкэ = 10 В.

44. Определить динамическое и статическое сопротивления перехода К-Э транзистора КТ312А в электронном фильтре, если напряжение в рабочей точке Uкэр= 20 В, при этом ΔUкэ = 2В, Iб = 0,6 мА.

45. Определить коэффициент усиления транзистора КТ312А, если ток базы Iб = 1 мА, а напряжение Uкэ= 10 В.

46. Определить, какое сопротивление нужно включить в базовую цепь транзистора КТ312А, входящего в усилительный каскад, чтобы при напряжении Uвх = 4 В, базовый ток не превышал Iб = 0,75 мА, при этом напряжение Uкэ = 5 В.

 

47.

       
   
 

Рассчитать входные h – параметры транзистора КТ312Б при Uкэ = 5 В Рис. 13. Рис. 14. Рис. 15.

и Iб = 0,6 мА.

48. Рассчитать входные h – параметры транзистора КТ312Б при Uкэ = 5 В и Iб = 0,6 мА.

49. Рассчитать выходные h – параметры транзистора КТ312Б при Uкэ =15 В и Iб = 0,3 мА.

50. Рассчитать входные h – параметры транзистора КТ312А при Uкэ = 5 В и Iб = 0,6 мА. Рассчитать выходные h – параметры транзистора КТ312А при Uкэ =10 В и Iб = 0,4 мА

51. Сердечник выполнен из литой стали толщиной d = 1,2 см. Форма сердечника показана на чертеже (рис. 16), размеры a = 4 см, b = 5 см, c = 1 см. Найти намагничивающую силу Um при условии, что магнитная индукция в сердечнике В = 11000 гс.

52. Определить намагничивающую силу Um при условии, что магнитная индукция в сердечнике (рис. 17) В = 12000 гс. Сердечник имеет два воздушных зазора по е = 1,2 мм и изготовлен из электротехнической стали толщиной d = 15 мм. Размеры a = 10 см, b = 18 см, c = 2 см.

53. Сердечник выполнен из литой стали толщиной d = 22 мм. Форма сердечника показана на чертеже (рис. 16), размеры a = 8 см, b = 10 см, c = 1,5 см. Найти намагничивающую силу Um при условии, что магнитная индукция в сердечнике В = 12000 гс.

54. Определить намагничивающую силу катушки, расположенной на среднем стержне, с тем чтобы в нем получить магнитную индукцию В1 = 4000 гс. Форма сердечника показана на чертеже (рис. 18), размеры a = 14 см, b = 24 см, c = 1,5 см, d = 18 мм. В местах стыка воздушный зазор 0,2 мм. Материал сердечника – чугун.

55. Сердечник выполнен из литой стали толщиной d = 8,2 мм. Форма сердечника показана на чертеже (рис. 16), размеры a = 8 см, b = 10 см, c = 1,5 см. Найти намагничивающую силу Um при условии, что магнитная индукция в сердечнике В = 13000 гс.

56. Определить намагничивающую силу Um при условии, что магнитная индукция в сердечнике (рис. 17) В = 16000 гс. Сердечник имеет два воздушных зазора по е = 1,1 мм и изготовлен из электротехнической стали толщиной d = 22 мм. Размеры a = 14 см, b = 14 см, c = 3 см.

57. Определить намагничивающую силу катушки, расположенной на среднем стержне, с тем чтобы в нем получить магнитную индукцию В1 = 7000 гс. Форма сердечника показана на чертеже (рис. 18), размеры a = 34 см, b = 50 см, c = 1,8 см, d = 18 мм. В местах стыка воздушный зазор 0,1 мм. Материал сердечника – чугун.

58. Определить намагничивающую силу Um при условии, что магнитная индукция (рис. 17) В = 15000 гс. Сердечник имеет два воздушных зазора по е = 1,5 мм и изготовлен из электротехнической стали толщиной d = 20 мм. Размеры a = 16 см, b = 16 см, c = 5 см.

59. Сердечник выполнен из литой стали толщиной d = 7,5 мм. Форма сердечника показана на чертеже (рис. 16), размеры a = 12 см, b = 12 см, c = 2,5 см. Найти намагничивающую силу Um при условии, что магнитная индукция в сердечнике В = 14000 гс.

60. Определить намагничивающую силу Um при условии, что магнитная индукция (рис. 17) В = 18000 гс. Сердечник имеет два воздушных зазора по е = 1,3 мм и изготовлен из электротехнической стали толщиной d = 22 мм. Размеры a = 18 см, b = 18 см, c = 2 см.

Рис. 16 Рис. 17

 

Рис. 18

Вопросы для подготовки к экзамену





Поделиться с друзьями:


Дата добавления: 2016-10-30; Мы поможем в написании ваших работ!; просмотров: 2716 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Студент всегда отчаянный романтик! Хоть может сдать на двойку романтизм. © Эдуард А. Асадов
==> читать все изречения...

2429 - | 2175 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.008 с.