Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Сверхвысокочастотные диоды




Стабистор

Полупроводниковый стабистор - это полупроводниковый диод, напряжение на котором в области прямого смещения слабо зависит от тока в заданном его диапазоне и который предназначен для стабилизации напряжения.

 

Рис. 7.1 ВАХ стабистора

 

Отличительной особенностью стабисторов по сравнению со стабилитронами является меньшее напряжение стабилизации, определяемое прямым падением напряжения на диоде, и составляет примерно 0,7 В.

Последовательное соединение двух или трех стабисторов дает возможность получить удвоенное или утроенное значение напряжения стабилизации, 1,4В и 2,1В.

Стабистор представляют собой единый прибор с последователь­ным соединением отдельных элементов (единичных стабисторов).

 

Импульсные диоды

 

Импульсный полупроводниковый диод — это полупроводниковый прибор, имеющий малую длительность переходных процессо в и предназначенный для применения в импульсных режимах работы.

 

- с p-n переходом;

- с переходом Шоттки.

Основное назначение импульсных диодов - работа в качестве, коммутирующих элементов электронных схем, а также импульсные диоды широко применяют в радиоэлектронике для детектирования высокочастотных сигналов.

 

Условия работы импульсных диодов обычно соответствуют высокому уровню инжекции, т. е. относительно большим прямым токам.

Свойства и параметры импульсных диодов определяются переходными процессами.

Физика работы импульсного диода с p-n переходом

При включении диода в прямом направлении через него течет большой диффузионный ток, ограниченный резистором Rн.

При этом в базе накапливается объемный заряд неосновных носителей, связанный с инерционностью движения неравновесных зарядов.

 

 

Рис.7.2 Схема включения и переходные процессы в импульсном диоде с p-n переходом

 

При переключении диода с прямого направления на обратное, в начальный момент времени, через диод идет большой обратный ток, ограниченный в основном объемным сопротивлением базы, обусловленный рассасывания неосновных носителей в базе.

С течением времени накопленный заряд в базе диода рассасывается (неосновные носители в базе рекомбинируют илиуходят из базы через р-n переход, после чего обратный ток уменьшается до своего стационарного значения.

 

Переходный процесс, в течение которого обратное сопротивление полупроводникового диода восстанавливается до постоянного значения после быстрого переключения с прямого направления на обратное, называют восстановлением обратного сопротивления диода.

Время восстановления обратного сопротивления диода – основной параметр импульсного диода.

 

Первые импульсные диоды – точечные диоды, сейчас вытеснены диодами изготовленными методом эпитаксиального наращивания.

Диод Шоттки

 

Диод Шоттки — это полупроводниковый прибор, выпрямительные свойства которого основаны на использовании выпрямляющего электрического перехода между ме­таллом и полупроводником

 

Для диода, рассмотренного выше, основным физическим процессом, ограничивающим быстродействие, оказывался процесс накопления и рассасывания не­основных носителей заряда в базе диода.

Существует и другой фактор (физический про­цесс) ограничивающий быстродействие диодов с p-n переходом - это перезаряд барьерной емкости, который имел в рассмотренном выше диоде второстепенное значение.

 

Использование выпрямляющего перехода Шоттки, т. е. вы­прямляющего

электрического перехода, образованного в результате контакта между металлом и полупроводником позволило повысить быстродействие импульсных диодов.

 

Отличие перехо­да Шоттки в том, что высота потенциального барьера для электронов и дырок может существенно отличаться.

Поэтому при вклю­чении выпрямляющего перехода Шоттки в прямом направлении прямой ток возникает благодаря движению основных носителей заряда из полупроводника в металл, а носители другого знака (неос­новные для полупроводника) практически не могут перейти из ме­талла в полупроводник из-за высокого для них потенциального барьера на переходе.

Таким образом, не происходит накопления неосновных носителей в базе у выпрямляющего перехода Шоттки.

Таким образом, на основе выпрямляющего перехода Шоттки мо­гут быть созданы выпрямительные, импульсные и сверхвысоко­частотные полупроводниковые диоды, отличающиеся от диодов с p-n переходом лучшим быстродействием.

 

Переход Шотки целесообразно создавать на кристалле п/п n - типа т.к. подвиж­ность электронов больше подвижности дырок.

Сверхвысокочастотные диоды





Поделиться с друзьями:


Дата добавления: 2016-10-30; Мы поможем в написании ваших работ!; просмотров: 466 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Надо любить жизнь больше, чем смысл жизни. © Федор Достоевский
==> читать все изречения...

2333 - | 2011 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.011 с.