Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Образование энергетических зон в кристаллах




Рассмотрим образование и строение энергетических зон в кристаллах.

Многие полезные с практической точки зрения физические свойства твердых тел, например, электропроводность объясняются их зонной структурой.

Твердые тела подразделяются на кристаллические и аморфные. Мы будем рассматривать строение энергетических зон только в твердых телах, имеющих кристаллическую структуру, к которым относятся большинство полупроводников, применяемых для создания электронной техники.

 

Энергетический спектр

Энергетический спектр, энергетическая структура - эти понятия привнесены в физику квантовой механикой. В классической физике система может иметь любую энергию.

В квантовой механике каждая физическая система характеризуется определенным энергетическим спектром. Например, в атоме водорода энергия электрона может принимать значения, равные

 

(1.1)

E 0 » 13,5 эВ, n = 1, 2,...

 

*) эВ – энергия, которую приобретает электрон, пройдя через электрическое поле с разносиътью потенциалов 1 Вольт

 

Одним из важнейших выводов квантовой механики в применении к макроскопическим телам было установление зонной структуры их энергетического спектра: когда полосы разрешенны х значений энергии перемежаются с полосами запрещенны х значений.

 

Коллективное движение частиц в твердых телах удобно характеризовать с помощью квазичастиц.

В твердом теле - это фононы, экситоны, магноны, плазмоны, поляроны, электроны и дырки.

Различают два класса квазичастиц - фермионы, и - бозоны.

Фермионы - частицы с полуцелым спином подчиняются статистике Ферми - Дирака.

Бозоны - частицы с целым спином, для них реализуется статистика Бозе - Эйнштейна.

 

*) спин - собственный момент количества движения (мех момент)

 

Мы будем рассматривать энергетический спектр движения электронов, относящихся к классу фермионов.

Кроме того, мы будем пользоваться понятием - фонон

 

Фонон – квант тепловых колебаний кристаллической решетки, квазичастица обладающая энергией Ефон

Ефон = kT (1.2)

При рассмотрении энергетического спектра электронов используются ряд приближений:

 

- рассматриваются только валентные электроны внешних атомных оболочек, которые образуют систему электронов проводимости.

- электроны внутренних атомных оболочек вместе с ядром представляются единым целым - ионом.

 

Рассмотрим качественно, как образуются энергетические зоны. Пусть N атомов составляют правильную пространственную решетку и расположены на больших (макроскопических) расстояниях друг от друга. Если однородно сжимать такую решетку, сохраняя геометрическое подобие то в процессе сближения атомов усиливается их взаимодействие, что и обуславливает трансформацию энергетического спектра электронов изолированного атома в электронный спектр кристалла.

 

Рис. 1. Схема образования энергетических зон кристалла из атомных уровней при сближении атомов.

 

 

В каждом атоме имеются различные уровни энергии (соответствуюшие электронным уровням) ЕМ, ЕL, ЕK и т.д. (рис.1)

В изолированном атоме электрон пребывает на стационарном уровне Еa неограниченно долгое время.

Чтобы покинуть атом электрону надо сообщить энергию для преодоления потенциального барьера.

При сближении атомов друг с другом у электронов появляется возможность обмениваться местами вследствие туннельного эффекта.

 

*)- явление просачивания частицы сквозь потенциальный барьер, туннельный эффект - чисто квантовое явление

.

Таким образом, сокращается время пребывания электрона на данном узле решетки. Время пребывания электрона вблизи данного узла t связано с размытием, или шириной, уровня D Е:

 

tD Е ~ , (1.3)

где = h/2p

 

*) h = 6,625.10-24– постоянная Планка (или квант действия),

 

(1.3) это соотношение неопределенности (соотношение неопределенности Гейзенберга для энергии Е и времени t)

другими словами - энергия частицы, в каком либо состоянии может быть определена тем точнее, чем дольше частица находиться в этом состоянии.

 

Следовательно, уменьшение t при образовании кристалла из изолированных атомов приводит к расширению уровня Еa в зону шириной D Еa.

Т.е. в результате переходов электронов при сближении атомов одинаковые уровни энергии расщепляются.

 

В кристалле огромное число атомов: 1022 - 1023 в кубическом сантиметре.

Каждый атомный уровень расщепляется на N уровней, расстояние между которыми тем меньше, чем больше число атомов.

В пределе N ® ¥ они слипаются образуя зоны разрешенных значения энергий, ширина которых тем больше, чем больше взаимодействие между соседними атомами. На каждый уровень в зоне может поместиться два электрона (квант. Физика), а всего в зону - 2 N электронов.

Важно: для расщепления уровня на N уровней нет необходимости, чтобы все N атомов были близки друг к другу; достаточно, чтобы к любому можно было добраться через соседей. Величина максимального расщепления определяется взаимодействием атомов - соседей

 

Для валентных электронов ширина разрешенной энергетической зоны составляет несколько электрон-вольт: D Е ~ /t ~ 1 эВ. Отсюда следует, что расстояние между уровнями, как было отмечено выше, бесконечно мало (D Е / N ~ 10-22 эВ), так что зону можно считать квазинепрерывной.

 

Для электронов внутренних атомных оболочек потенциальный барьер шире и выше, и вероятность туннельного эффекта намного меньше, чем для валентных электронов. Вследствие этого электроны глубоких уровней практически связаны с определенными узлами решетки. Так К-электрон натрия переходит от одного узла к другому в среднем за t ~ 1 час, а DЕ ~ 10-19 эВ, т. е. К-уровень в кристалле остается практически резким. Однако и на глубоких уровнях в стационарном состоянии электрон распределен с одинаковой вероятностью по всем узлам кристаллической решетки.

 

Пример:

Частота переходов электронов n от одного атома к другому пропорциональна вероятности туннелирования через потенциальный барьер DЕп.

Можно показать, что при высоте ПБ DЕп ~ 10 Эв время нахождения электрона в определенном узле решетки всего лишь

 

t = 1/n ~ 10-15 секунд.. (1.4)

 

Иными словами, электроны внешних атомных оболочек не локализуются вблизи определенного узла решетки, а движутся по кристаллу.

При радиусе боровской орбиты b ~ 10-8 см скорость движения

 

v ~ b/t= 10-8/10-15 ~ 107 см/с. (1.5)

 

Справка: скорость электрона в атоме v ~ 108 см/с,

 

 





Поделиться с друзьями:


Дата добавления: 2016-10-30; Мы поможем в написании ваших работ!; просмотров: 1198 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Либо вы управляете вашим днем, либо день управляет вами. © Джим Рон
==> читать все изречения...

2258 - | 1995 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.009 с.