Собственная и примесная проводимость полупроводников. Электропроводность полупроводников.
Полупроводники — это вещества, удельное сопротивление которых убывает с повышением температуры, наличием примесей, изменением освещенности.
Типичными полупроводниками являются кристаллы германия и кремния, в которых атомы объединены ковалентной связью.
По механизму образования свободных носителей заряда проводимость полупроводников делится на собственную и примесную. По виду основных носителей заряда делится на: электронную, дырочную, электронно–дырочную.
Носители заряда — общее название подвижных частиц или квазичастиц, которые несут электрический заряд и способны обеспечивать протекание электрического тока.
Примерами подвижных частиц являются электроны, ионы. Примером квазичастицы-носителя заряда является дырка.
Свободными носителями заряда в полупроводниках как правило, являются электроны, возникающие в результате ионизации атомов самого полупроводника (собственная проводимость) или атома примеси (примесная проводимость).
При нагревании полупроводников их атомы ионизируются. Освободившиеся электроны не могут быть захвачены соседними атомами, так как все их валентные связи насыщены. Свободные электроны под действием внешнего электрического поля могут перемещаться в кристалле, создавая электронный ток проводимости. Удаление электрона с внешней оболочки одного из атомов в кристаллической решетке приводит к образованию положительного иона. Этот ион может нейтрализоваться, захватив электрон. Далее, в результате переходов электронов от атомов к положительным ионам происходит процесс хаотического перемещения в кристалле места с недостающим электроном — «дырки». При помещении кристалла в электрическое поле возникает упорядоченное движение «дырок» — дырочный ток проводимости.
На проводимость полупроводников большое влияние оказывают примеси. Примеси бывают донорные и акцепторные. Донорная примесь — это примесь с большей валентностью. При добавлении донорной примеси в полупроводнике образуются лишние электроны. Проводимость станет электронной, а полупроводник называют полупроводником n-типа.
Акцепторная примесь — это примесь с меньшей валентностью. При добавлении такой примеси в полупроводнике образуется лишнее количество «дырок». Проводимость будет «дырочной», а полупроводник называют полупроводником р-типа.
P-N переход в состоянии равновесия.
Переходы – области, образующиеся при контакте разного рода полупроводников.
Особую роль играют переходы металл-полупроводник (МП), являющиеся неотъемлемой частью каждого полупроводникового прибора. Различают невыпрямляющие (или омические) и выпрямляющие переходы МП. Выпрямляющие переходы имеют характеристики, зависящие от направления и величины приложенного к ним напряжения.
Переход Шоттки – переход металла в полупроводник.
Переход между двумя областями полупроводника с разнотипной проводимостью называется электронно-дырочным переходом или p-n переходом.
Равновесие соответствует нулевому внешнему напряжению на переходе.
Поскольку концентрация электронов в n-области значительно больше, чем в p-области, а концентрация дырок в p-области больше, чем в n-области, то на границе раздела полупроводников возникает градиент концентрации подвижных носителей заряда (дырок и электронов): .
Направленное движение свободных носителей, вызванное их неравномерным распределением в объеме полупроводника, называют диффузионным движением. Электроны под действием диффузии перемещаются из p–области в n–область. Это движение зарядов (основных носителей) образует диффузионный ток p-n-перехода, содержащий две составляющие: электронную и дырочную, плотность которых равна:
На границе p- и n-областей создаётся слой, обеднённый подвижными носителями. В приконтактной области n-типа появляется нескомпенсированный заряд положительных ионов, а в дырочной области – нескомпенсированный заряд отрицательных ионов примесей. Таким образом, электронный полупроводник заряжается положительно, а дырочный – отрицательно.
Между областями полупроводника с различными типами электропроводности возникает электрическое поле напряжённостью Е. Образовавшийся двойной слой электрических зарядов называется запирающим, он обеднён основными носителями и имеет вследствие этого низкую электропроводность. Вектор напряженности поля направлен так, что он препятствует диффузионному движению основных носителей и ускоряет неосновные носители. Этому полю соответствует контактная разность потенциалов ϕк, связанная с взаимной диффузией носителей. За пределами p-n-перехода полупроводниковые области остаются нейтральными.
Движение неосновных носителей образует дрейфовый ток, направленный навстречу диффузионному току. Их перемещение характеризуется подвижностью и плотностями.
, - их средняя скорость.
Итак, в условиях равновесия встречные дрейфовый и диффузионный токи
должны быть равны, т.е.
В p-n переходе всегда есть неподвижно-локализованные заряды.