Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Преобразователи постоянного напряжения Повышающий




Этот тип преобразователя называют также импульсным преобразователем с параллельным ключом. Силовая часть схемы преобразователя с параллельным ключом S и приведена на рисунке 17.4,а.

Рис.4. Повышающий широтно-импульсный преобразователь- a, диаграмма его работы - b

Принцип действия преобразователя основан на периодическом накоплении энергии и передаче ее из индуктивности L в цепь и нагрузки RН. На интервале I при замкнутом ключе S ток медленно нарастает, в реакторе L накапливается энергия, во II интервале при разомкнутом ключе S ток протекает через нагрузку, создавая в ней пульсирующее напряжение.

Длительности интервалов I и II составляют и соответственно. Принимая ключ S, источник E и реактор идеальными, а сопротивление нагрузки малым, составим уравнения

для I-го интервала

, (17.6)

и II –го интервала

, (17.7)

Учитывая, что изменение тока происходит по линейному закону, уравнения можно переписать в виде

. (17.8)

; (17.9)

Из этих уравнений следует, что , в соответствии с этим выражением регулировочная характеристика имеет вид, показанный на рисунке 17.6,II.

Рисунок 17.6 - Регулировочные характеристики импульсных преобразователей: понижающего - I, повышающего –II, повышающего с инверсией –III

 

ПРЕОБРАЗОВАТЕЛИ ПОСТОЯННОГО НАПРЯЖЕНИЯ ПОВЫШАЮЩИЙ С ИНВЕРСИЕЙ.

Этот тип преобразователя называется также преобразователем с параллельным индуктивным накопителем. Реактор L накапливает энергию при включенном состоянии ключа S, передает ее в нагрузку .

Рисунок 17.5 - Повышающий широтно-импульсный преобразователь с инверсией выходного напряжения- a, диаграмма его работы - b

При включенном ключе (интервал I) к реактору L приложено напряжение Е и он накапливает энергию за счет протекания тока . Длительность этого интервала соответствует времени включенного состояния ключа . При выключении ключа диод VD переходит в проводящее состояние и энергия реактора поступает в нагрузку (интервал II). Длительность интервала II соответствует времени выключенного состояния ключа . Принимая ключ S, источник E и реактор идеальными, а сопротивление нагрузки малым, составим уравнения

для I-го интервала

, (17.10)

иII –го интервала

. (17.11)

Учитывая, что изменение тока происходит по линейному закону, уравнения можно переписать в виде

, (17.12)

. (17.13)

Из этих уравнений следует, что , в соответствии с этим выражением регулировочная характеристика имеет вид показанный на рисунке 17.6,III.

 

Рисунок 17.6 - Регулировочные характеристики импульсных преобразователей: понижающего - I, повышающего –II, повышающего с инверсией –III

АВТОНОМНЫЙ ИНВЕРТОР ТОКА.

Автономными инверторами называют преобразователи постоянного напряжения в переменное, работающие на автономную (отдельную) нагрузку, не связанную с питающей сетью.

Самой распространенной схемой АИТ является симметричная мостовая схема (рисунок 18.1).

Рисунок 18.1 - Схема однофазного мостового АИТ

В нее входит инверторный мост на тиристорах VT1….VT4, в диагональ которого включена активная нагрузка и параллельно ей - конденсатор С. Схемным признаком АИТ является наличие дросселя с достаточно большой индуктивностью в цепи источника питания; который обеспечивает постоянство тока, потребляемого от источника постоянного напряжения..

Рисунок 18.2 - Временная диаграмма работы однофазного АИТ

Пусть на интервале 1-2 открыты тиристоры VT1, VT2, тогда нагрузка с параллельным конденсатором будет подключена к источнику тока . Напряжение на нагрузке будет изменяться по экспоненте из-за заряда конденсатора. В точке 2 подается опирающий импульс на VT1 и VT4. Цепь нагрузки оказывается замкнутой накоротко через открытые тиристоры. Возникают два контура разряда: первый контур VT1-VT2, второй контур VT3-VT4. В первом контуре ток разряда протекает на встречу анодному току тиристора VT1, а во втором - на встречу анодному току тиристора VT3. Анодные токи через тиристоры практически мгновенно становятся равными нулю и тиристоры VT1 и VT3 закрываются. Ток начинает протекать через тиристоры VT2 и VT4, направление тока меняется на противоположное. Напряжение на нагрузке из-за наличия конденсатора начинает уменьшаться по экспоненте. Это напряжение прикладывается к тиристорам в обратном направлении в течении времени , которое должно быть больше , что позволяет тиристорам восстановить свои запирающие свойства. В противном случае, после прохождения напряжения через ноль может произойти повторное включение тиристоров VT1 и VT3, тогда все четыре тиристора окажутся открытыми. Это явление является аварийным и называется опрокидыванием инвертора.

Форма, значение выходного напряжения и время отводимое на запирание тиристоров , зависят постоянной времени разряда конденсатора через резистивную нагрузку .

Рассмотрим процесс разряда емкости под действием тока

Рис.3. К определению времени отводимого на закрытие тиристора

В соответствии с эквивалентной схемой (рисунок 18.13,а) запишем

; . (18.1)

Решая полученное дифференциальное уравнение, получим

, (18.2)

где начальное напряжение на конденсаторе при

Если , то, как видно из рисунка 18.3,b

, а при , . (18.3)

Подставляя в предыдущее выражение, получим

, (18.4)

. (18.5)

Пользуясь последним выражением, найдем , как момент когда

, (18.6)

. (18.7)

При увеличении сопротивления нагрузки увеличивается амплитуда напряжения на нагрузке и время, отводимое на закрытие тиристора (рисунок 18.3,b) и наоборот.. Оба случая нежелательны, т.к. при больших возможен пробой тиристоров, а при малых значениях может произойти опрокидывание инвертора.





Поделиться с друзьями:


Дата добавления: 2016-10-30; Мы поможем в написании ваших работ!; просмотров: 1029 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Ваше время ограничено, не тратьте его, живя чужой жизнью © Стив Джобс
==> читать все изречения...

2222 - | 2164 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.008 с.