Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Масштабы Вселенной и ее строение

Шкловский И. С.

Вселенная, жизнь, разум / Под ред. Н. С. Кардашева и В. И. Мороза,

6-е изд., доп.— М.: Наука. Гл. ред. физ.-мат. лит., 1987

(Проблемы науки и техн. прогресса). — 320 с.

2 р. 10 к., 132000 экз.

 

Посвящена проблеме возможности существования жизни, в том числе и разумной, на других планетных системах. Вместе с тем книга содержит достаточно полное и доступное изложение результатов современной астрофизики. Книга получила первую премию на конкурсе Общества «Знание» на лучшую научно-популярную книгу. Пятое издание было переработано в соответствии с новой точкой зрения автора. Шестое издание, подготовленное к публикации Н. С. Кардашевым и В. И. Морозом, дополнено тремя статьями И. С. Шкловского.

Для широкого круга читателей со средним образованием.

 


ОГЛАВЛЕНИЕ

От редакторов. И. С. Шкловский о Вселенной, жизни, разуме.

Предисловие к пятому изданию.

Введение.

 

Часть первая.

АСТРОНОМИЧЕСКИЙ АСПЕКТ ПРОБЛЕМЫ

1. Масштабы Вселенной и ее строение.

2. Основные характеристики звезд.

3. Межзвездная среда.

4. Эволюция звезд.

5. Сверхновые звезды, пульсары и черные дыры.

6. Об эволюции галактик.

7. Большая Вселенная.

8. Кратные звездные системы.

9. О происхождении Солнечной системы.

10. Вращение звезд и планетная космогония.

 

Часть вторая.

ЖИЗНЬ ВО ВСЕЛЕННОЙ

11. Условия, необходимые для возникновения и развития жизни на планетах.

12. Об определении понятия «жизнь».

13. О возникновении и развитии жизни на Земле.

14. От сине-зеленых водорослей до человека.

15. «Есть ли жизнь на Земле?»

16. «Есть ли жизнь на Марсе, нет ли жизни на Марсе...»

17. Возможность жизни на других телах Солнечной системы.

 

Часть третья.

РАЗУМНАЯ ЖИЗНЬ ВО ВСЕЛЕННОЙ

18. Общие замечания.

19. Освоение человечеством Солнечной системы.

20. Радиосвязь между цивилизациями, находящимися на различных планетных системах.

21. Возможность осуществления межзвездной связи оптическими методами.

22. Связь с инопланетными цивилизациями с помощью автоматических зондов.

23. Теоретико-вероятностный анализ межзвездной радиосвязи. Характер сигналов.

24. О возможности прямых контактов между инопланетными цивилизациями.

25. Замечания о темпах и характере технологического развития человечества.

26. Разумная жизнь как космический фактор.

27. Где вы, братья по разуму?

 

ПРИЛОЖЕНИЕ

I. Поиски внеземных цивилизаций.

II. Возможна ли связь с разумными существами других планет?

III. Существуют ли внеземные цивилизации?


ОТ РЕДАКТОРОВ

И. С. Шкловский о Вселенной, жизни, разуме

Автор книги Иосиф Самуилович Шкловский — выдающийся астрофизик, член-корреспондент Академии наук СССР, член многих зарубежных академий, оказавший заметное влияние на развитие астрофизики второй половиныXX века.Онявляется создателем крупной школы всеволновой эволюционной астрофизики, автором современной теории солнечной короны, основополагающих работ по физике межзвездной среды на основе данных атомной и молекулярной радиоспектроскопии, о связи космических мазеров с областями образования звезд и планетных систем, об эволюции звезд от главной последовательности через стадию красных гигантов к планетарным туманностям и белым карликам, о развитии космических взрывов сверхновых звезд и ядер галактик, о реликтовом космологическом излучении и, наконец, о проблеме жизни во Вселенной.

И. С. Шкловский родился 1 июля 1916 г. на Украине, в городе Глухове. Окончив школу-семилетку, он работает десятником на строительстве Байкало-Амурской железной дороги, в 1933 г. поступает на физико-математический факультет Владивостокского университета и через два года переходит на физический факультет МГУ. В 1938 г. молодого физика-оптика принимают в аспирантуру на кафедру астрофизики в Государственный астрономический институт им. П. К. Штернберга при МГУ, с которым в дальнейшем он был связан всю свою жизнь. Далее начало войны, эвакуация в Ашхабад (из-за плохого зрения не взяли на фронт), возвращение в Москву, в ГАИШ, и многие годы на передних фронтах революции в астрономии, начавшейся в послевоенные годы. Непрерывно, со времени основания, он возглавлял отдел астрофизики в Институте космических исследований АН СССР и отдел радиоастрономии ГАИШ. Он умер в Москве 3 марта 1985 г. от неожиданно наступившего инсульта. Он всегда был искренним и добрым человеком с глубоким аналитическим умом, неиссякаемым юмором, живым и общительным характером. Большой талант его как ученого и философа, оригинальность мыслей и простота их изложения, темперамент оратора и благожелательность к жаждущим знаний, многочисленные выступления перед специалистами и широкой аудиторией снискали ему широчайшую известность как в научных кругах, так и среди учащейся молодежи, студентов, аспирантов. Наиболее характерными его чертами были беспредельный интерес к фактам, поиск главного, любовь к простоте в понимании явлений природы, стремление всегда быть на переднем крае.

Его интерес к проблеме жизни во Вселенной, по-видимому, начался с совместной с В. И. Красовским работы, связывавшей катастрофическую гибель рептилий с повышением коротковолнового излучения, обусловленного взрывом ближайшей сверхновой. Работа была доложена впервые в 1957 г. в ГАИШ и вызвала широкий резонанс. Затем И. С. Шкловский в 1958 г. увлекся гипотезой об искусственности спутников Марса. Аномальное торможение Фобоса при движении по орбите заставляло предполагать очень малую его плотность или даже пустоту внутри. Для подтверждения гипотезы в ГАИШ был начат даже специальный проект, предполагающий измерить диаметр Фобоса с помощью первых межпланетных станций, направляемых к Марсу. Огромное влияние на развитие интереса к проблеме жизни во Вселенной оказало начало космических исследований и публикация в 1959 г. в журнале «Nature» статьи Дж. Коккони и Ф. Моррисона, предлагающей начать поиск искусственных сигналов на волне 21 см. Первая статья И. С. Шкловского в той же области опубликована в журнале «Природа» № 7 за 1960 г. Она приведена в приложении II. Первое издание книги «Вселенная, жизнь, разум» вышло в 1962 г. Книга оказала значительное влияние на самые широкие круги читателей в нашей стране и за рубежом. В приложении I к этому 6-му изданию мы приводим отрывки из воспоминаний И. С. Шкловского о том, как создавалась эта книга, и о первых годах становления проблемы поиска жизни во Вселенной. Читатель, конечно, заметит, что эти воспоминания написаны в стиле литературных записок и заметно отличаются от общего текста книги и двух статей. В приложении III приводится последняя его статья, вышедшая в журнале «Земля и Вселенная», когда Иосифа Самуиловича уже не стало. Весьма интересно сопоставление приложения II и приложения III, отражающее эволюцию взглядов Иосифа Самуиловича за 25 лет. Широко известна последняя концепция И. С. Шкловского о возможной уникальности жизни на Земле. Эта позиция связана, с одной стороны, с противоречием между беспредельностью научно-технических возможностей человечества и молчанием космоса, несмотря на огромные успехи астрофизических наблюдений в последние годы. С другой стороны, на позицию автора очень сильно повлиял дух первых успехов освоения космоса в 60-е годы и существенное осложнение международной обстановки, угроза всеобщего уничтожения, нависшие над миром в последние годы.

В целом к проблеме поиска жизни во Вселенной за последние годы по-прежнему растет интерес со стороны астрономов и работников самых различных специальностей. В 1982 г. Генеральная ассамблея Международного астрономического союза (MAC) утвердила создание постоянной комиссии «Биоастрономия». Комиссия на 1985 г. состояла из примерно 250 членов MAC. Результаты последних исследований докладывались на первом Международном симпозиуме этого союза, прошедшем в 1984 г. (США). Некоторые наиболее значительные работы описаны в этом издании.

Авторы настоящего предисловия не разделяют точки зрения о единственности жизни на Земле. Да и сам Иосиф Самуилович много раз говорил, что первым радовался бы, если бы признаки внеземных цивилизаций были обнаружены. По нашему мнению, главное обстоятельство, затрудняющее поиск, — исключительная трудность предсказать облик и поведение, если цивилизация на миллиарды, миллионы, тысячи или хотя бы на сотни лет старше нас (а ведь возраст Вселенной с ее современными формами астрономических объектов 10-20 миллиардов лет). Эту проблему Иосиф Самуилович много раз обсуждал со своими коллегами. Поиск форм человекоподобных сообществ, находящихся на близком к нам технологическом уровне, — наивное заблуждение, не сулящее никаких успехов. Серьезные программы, по-видимому, должны базироваться на поиске и исследованиях необычных областей космического пространства, которые можно было бы связать в дальнейшем с разумной целенаправленной деятельностью. Вполне вероятно обнаружение нового класса астрономических объектов, характеризующихся в первую очередь аномально большим количеством вещества в твердотельной форме. Их открытие может быть сделано с помощью астрономических наблюдений, в первую очередь в миллиметровом и инфракрасном диапазонах, где находится максимум теплового излучения такого вещества. Здесь особенно интересными представляются результаты наблюдений с помощью первого космического инфракрасного телескопа (IRAS, проект Великобритании, Нидерландов и США). Телескоп обнаружил около 200000 новых астрономических объектов, часть которых обладает спектром, сходным с ожидаемым от крупных астроинженерных конструкций. Даже в нашей Солнечной системе обнаружено около 10000 новых объектов, по-видимому, астероидов. Так что при изучении этих объектов инфракрасную, субмиллиметровую и миллиметровую астрономию ожидают крупные открытия, возможно, и в области обнаружения внеземной жизни. Весьма вероятно и обнаружение специальных радиосигналов других цивилизаций. Как нам сейчас кажется, это должны быть телевизионные передачи, и наиболее перспективен их поиск в диапазоне миллиметровых волн.

Другая сторона исследований, вероятно, связана со становлением новой науки — науки о законах и формах развития цивилизаций на астрономических интервалах времени. Одно из предлагавшихся названий этой науки — космософия. Очевидно, что такая наука должна базироваться на закономерностях нашей цивилизации, обобщать их с учетом разнообразий условий во Вселенной, учитывать перспективы создания искусственного разума, бессмертия, освоения космического пространства... Во всех этих вопросах книга И. С. Шкловского открывает перед читателем захватывающие перспективы.

Редакторы стремились в максимально возможной степени сохранить оригинальный текст И. С. Шкловского. Сделанные редакторами дополнения выделены ромбиками (#).

Н. С. Кардашев, В. И. Мороз


ПРЕДИСЛОВИЕ К ПЯТОМУ ИЗДАНИЮ

Первое издание этой книги было написано летом 1962 года. Выход книги в свет был приурочен к славному юбилею — пятилетию запуска первого советского искусственного спутника Земли — событию, которое по предложению тогдашнего президента АН СССР М. В. Келдыша должно было быть широко отмечено в нашей научной печати. Я никогда не забуду тот высокий накал страстей и чудесное волнение, постоянно испытываемое в то время нами — свидетелями и участниками Великого Предприятия — первых, тогда еще робких, шагов на длинном пути овладения человечеством Космоса. События развертывались с фантастической быстротой. Первые советские «Лунники», фантастическое ощущение от первых, весьма несовершенных снимков обратной стороны Луны, феерический полет Гагарина и первый выход в открытый Космос Леонова. И уже тогда — первые рабочие проработки дальних космических рейсов к Марсу и Венере. Увы, в наш век мы ко всему быстро привыкаем; выросло уже поколение людей, родившихся в начале космической эры. Они станут свидетелями еще более грандиозных и дерзновенных свершений. Но несомненно, что первый прорыв человечества в Космос навсегда останется крупнейшей вехой в его истории.

Я пишу это для того, чтобы читатели поняли ту атмосферу, в которой создавалась эта книга. Она в какой-то степени демонстрирует тот давно известный феномен, что мысль человека всегда опережает его реальные возможности и служит тем самым как бы путеводной звездой, указывающей на новые цели и проблемы. От первых «детских» шагов человечества в Космосе, свидетелями которых мы были, до грядущей перестройки Солнечной системы человечеством — дистанция огромного размера. Но так уж устроен человек, что ему необходимо иметь перспективу.

Предмет этой книги так же стар, как и человеческая культура. Но только в наше время впервые открылась возможность подлинно научного анализа проблемы множественности обитаемых миров. Сейчас уже очевидно, что эта проблема является комплексной, требующей к себе самого серьезного внимания широчайшего спектра научных профессий — кибернетиков, астрономов, радиофизиков, биологов, социологов и даже экономистов. Увы, эта проблема раньше нам представлялась намного более простой, чем она оказалась. От эпохи «подросткового оптимизма», недавно носившего тотальный характер («вот построим большой-большой радиотелескоп и установим контакт с инопланетянами»), исследователи приступают к более зрелому анализу этой труднейшей проблемы. И чем больше мы углубляемся в ее понимание, тем яснее становится, что разумная жизнь во Вселенной — феномен необыкновенно редкий, а может быть, даже уникальный. Тем большая ответственность ложится на человечество, чтобы эта искра сознания благодаря его неразумным действиям не погасла, а разгорелась бы в яркий костер, наблюдаемый даже с далеких окраин нашей Галактики.


ВВЕДЕНИЕ

Представления о том, что разумная жизнь существует не только на нашей планете Земле, но и широко распространена на множестве других миров, возникли в незапамятные времена, когда астрономия была еще в зачаточном состоянии. По-видимому, корни этих представлений восходят к временам первобытных культов, «оживляющих» окружавшие людей предметы и явления. Туманные идеи о множественности обитаемых миров содержатся в буддийской религии, где они связываются с идеалистической идеей переселения душ. Согласно этому религиозному учению Солнце, Луна и неподвижные звезды являются теми местами, куда переселяются души умерших людей, прежде чем они достигнут состояния Нирваны...

По мере развития астрономии идеи о множественности обитаемых миров становились более конкретными и научными. Большинство греческих философов, как материалистов, так и идеалистов, считали, что наша Земля никоим образом не является единственным обиталищем разумной жизни.

Приходится только удивляться гениальности догадок греческих философов, если учесть уровень развития науки тех времен. Так, например, основатель ионийской философской школы Фалес учил. что звезды состоят из такого же вещества, что и Земля. Анаксимандр утверждал, что миры возникают и разрушаются. Анаксагор, один из первых приверженцев гелиоцентрической системы, считал, что Луна обитаема. Согласно Анаксагору повсюду рассеяны невидимые «зародыши жизни», являющиеся причиной возникновения всего живого. На протяжении последующих веков вплоть до настоящего времени подобные идеи «панспермии» (извечность жизни) многократно высказывались различными учеными и философами. Идеи «зародышей жизни» были приняты христианской религией вскоре после ее возникновения.

Материалистическая философская школа Эпикура учила о множественности обитаемых миров, причем считала эти миры вполне подобными нашей Земле. Например, эпикуреец Митродор утверждал, что «…считать Землю единственным населенным миром в беспредельном пространстве было бы такой же вопиющей нелепостью, как утверждать, что на громадном засеянном поле мог бы вырасти только один пшеничный колос». Интересно, что сторонники этого учения под «мирами» подразумевали не только планеты, но и множество других небесных тел, разбросанных в безграничных просторах Вселенной.

Замечательный римский философ-материалист Лукреций Кар был пламенным приверженцем идеи о множественности обитаемых миров и безграничности их числа. В своей знаменитой поэме «О природе вещей» он писал: «Весь этот видимый мир вовсе не единственный в природе, и мы должны верить, что в других областях пространства имеются другие земли с другими людьми и другими животными». Любопытно отметить, что Лукреций Кар совершенно не понимал природы звезд — он считал их светящимися земными испарениями... Поэтому свои миры, населенные разумными существами, он помещал за пределами видимой Вселенной...

В течение последующих полутора тысяч лет господствовавшая христианская религия, опираясь на учение Птолемея, считала Землю средоточием Вселенной. В таких условиях ни о каком развитии представлений о множественности обитаемых миров не могло быть и речи. Крушение птолемеевой системы, связанное с именем гениального польского астронома Николая Коперника, впервые показало человечеству его истинное место во Вселенной. Коль скоро Земля была «низведена» до одной из рядовых планет, обращающихся вокруг Солнца, мысль о том, что и на других планетах также возможна жизнь, получила серьезное научное обоснование.

Первые телескопические наблюдения Галилея, открывшие новую эпоху в астрономии, поражали воображение современников. Стало ясно, что планеты — это небесные тела, во многих отношениях похожие на Землю. Естественно возникал вопрос: если на Луне есть горы и долины, почему бы не считать, что там есть и города, населенные разумными существами? И почему бы не считать, что наше Солнце не является единственным светилом, окруженным сонмом планет? Эти смелые идеи в ясной и недвусмысленной форме высказывал великий итальянский мыслитель шестнадцатого века Джордано Бруно. Он писал: «...Существуют бесчисленные солнца, бесчисленные земли, которые кружатся вокруг своих солнц, подобно тому как наши семь планет кружатся вокруг нашего Солнца... На этих мирах обитают живые существа».

Католическая церковь жестоко расправилась с Джордано Бруно. Судом святейшей инквизиции он был признан неисправимым еретиком и сожжен заживо в Риме на площади Цветов 17 февраля 1600 г. Это преступление церкви против науки было далеко не последним. Вплоть до конца XVII в. католическая (а также протестантская) церковь оказывала яростное сопротивление новой, гелиоцентрической системе мира. Постепенно, однако, безнадежность открытой борьбы церкви против нового мировоззрения становилась ясной даже самим церковникам. Они стали приспосабливаться к новым условиям. И сейчас богословы уже признают возможность существования мыслящих существ на других планетах, считая, что это не противоречит основным догмам религии...

Во второй половине XVII и в XVIII в. рядом ученых, философов и писателей было написано много книг, посвященных проблеме множественности обитаемых миров. Назовем имена Сирано де Бержерака, Фонтенеля, Гюйгенса, Вольтера. Эти сочинения, иногда блестящие по форме и содержащие глубокие мысли (особенно это относится к Вольтеру), были совершенно умозрительными.

Гениальный русский ученый М. В. Ломоносов был убежденным сторонником идеи о множественности обитаемых миров. Тех же взглядов придерживались такие великие философы и ученые, как Кант, Лаплас, Гершель. Можно сказать, что эта идея получила повсеместное распространение, и почти не было ученых или мыслителей, которые выступали бы против нее. Лишь отдельные голоса предостерегали против представления, что жизнь, в том числе разумная, распространена на всех планетах.

Укажем, например, на книгу английского ученого Уэйвелла, вышедшую в 1853 г. Уэйвелл довольно смело для того времени (как меняются времена!) высказал утверждение, что далеко не все планеты могут служить прибежищем жизни. Например, он указывает, что большие планеты Солнечной системы состоят из «воды, газов и паров» и поэтому непригодны для жизни. В равной степени непригодны для жизни планеты, слишком близко расположенные к Солнцу, «потому что благодаря большому количеству теплоты вода не может удержаться на их поверхности». Он доказывает, что на Луне не может быть никакой жизни — идея, которая весьма медленно входила в сознание людей.

Даже в конце XIX в. известный астроном В. Пикеринг убежденно доказывал, что на поверхности Луны наблюдаются массовые миграции насекомых, объясняющие наблюдаемую изменчивость отдельных деталей лунного ландшафта... Заметим, что в сравнительно недавнее время эта гипотеза применительно к Марсу возродилась снова...

До какой степени общеприняты были в XVIII в; и первой половине XIX в. представления о повсеместном распространении разумной жизни, видно, на следующем примере. Знаменитый английский астроном В. Гершель считал, что Солнце обитаемо, а солнечные пятна — это просветы в ослепительно ярких облаках, окутывающих темную поверхность нашего светила. Через эти «просветы» воображаемые жители Солнца могут любоваться звездным небом... Кстати, укажем, что великий Ньютон также считал Солнце обитаемым.

Во второй половине XIX в. большую популярность приобрела книга Фламмариона «О множественности обитаемых миров». Достаточно сказать, что за 20 лет она выдержала во Франции 30 изданий! Эта книга была переведена на ряд иностранных языков. В этом произведении, а также в других своих сочинениях Фламмарион стоит на идеалистических позициях, считая, что жизнь — цель образования планет. Книги Фламмариона, написанные очень темпераментно, живым, несколько вычурным языком, производили большое впечатление на современников. Очень странное ощущение возникает, когда их читаешь теперь, в наши дни. Поражает несоответствие между мизерным количеством знаний о природе небесных светил (что определялось тогдашним уровнем только начинавшей развиваться астрофизики) и категоричностью суждений о множественности обитаемых миров... Фламмарион больше апеллирует к эмоциям читателей, чем к их логическому мышлению.

В конце XIX в. и в XX в. большое распространение получили различные модификации старой гипотезы панспермии. Согласно этой концепции жизнь во Вселенной существует извечно. Живая субстанция не возникает каким-нибудь закономерным образом из неживой, а переносится тем или иным способом от одной планеты к другой.

Так, например, согласно Сванте Аррениусу частицы живого вещества — споры или бактерии, осевшие на малых пылинках, силой светового давления переносятся с одной планеты на другую, сохраняя свою жизнеспособность. Если на какой-нибудь планете условия оказываются подходящими, попавшие туда споры прорастают и дают начало эволюции жизни на ней.

Хотя возможность переноса жизнеспособных спор с одной планеты на другую в принципе нельзя считать исключенной, трудно сейчас серьезно говорить о таком механизме переноса жизни от одной звездной системы к другой (см. гл. 16). Аррениус считал, например, что под влиянием светового давления пылинки могут двигаться с огромной скоростью. Однако наши современные знания о природе межзвездной среды скорее всего исключают такую возможность. Наконец, сам по себе вывод об извечности жизни во Вселенной решительно противоречит существующим сейчас представлениям об эволюции звезд и галактик. Согласно этим представлениям, достаточно надежно обоснованным большим количеством наблюдений, в прошлом Вселенная была чисто водородной или водородно-гелиевой плазмой. По мере эволюции Вселенной происходит непрерывное ее «обогащение» тяжелыми элементами (см. гл. 7), которые совершенно необходимы для всех мыслимых форм живой материи.

Далее, из наблюдаемого «реликтового» излучения Вселенной следует, что в прошлом (15—20 млрд. лет назад) условия во Вселенной были таковы, что существование жизни было невозможно (см. гл. 6). Все это означает, что жизнь могла появиться в определенных, благоприятных для ее развития областях Вселенной лишь на некотором этапе эволюции последней. Тем самым основное предположение гипотезы панспермии оказывается неправильным.

Пламенным сторонником идеи о множественности миров, населенных разумными существами, был замечательный русский ученый, основатель астронавтики К. Э. Циолковский. Приведем только несколько его высказываний по этому вопросу: «Вероятно ли, чтобы Европа была населена, а другая часть света нет? Может ли быть один остров с жителями, а другие — без них...?» И далее: «...Все фазы развития живых существ можно видеть на разных планетах. Чем было человечество несколько тысяч лет тому назад и чем оно будет по истечении нескольких миллионов лет — все можно отыскать в планетном мире...» Если первая цитата Циолковского, по существу, повторяет высказывания античных философов, то во второй содержится новая важная мысль, получившая впоследствии развитие. Мыслители и писатели прошлых веков представляли себе цивилизации на других планетах в социальном и научно-техническом отношениях вполне подобными современной им земной цивилизации. Циолковский справедливо указал на огромную разницу уровней цивилизации на разных мирах. Все же следует заметить, что высказывания нашего замечательного ученого по этому вопросу не могли тогда еще (да и сейчас...) быть подкреплены выводами науки.

Развитие представлений о множественности обитаемых миров неразрывно связано с развитием космогонических гипотез. Так, например, в первой трети XX столетия, когда господствовала космогоническая гипотеза Джинса, согласно которой планетная система Солнца образовалась в результате маловероятной космической катастрофы («почти столкновение» двух звезд), большинство ученых считало, что жизнь во Вселенной — редчайшее явление. Представлялось крайне маловероятным, чтобы в нашей звездной системе — Галактике, насчитывающей свыше 150 млрд. звезд, хотя бы у одной (помимо нашего Солнца) была семья планет. Крушение космогонической гипотезы Джинса в тридцатых годах этого столетия и бурное развитие астрофизики подвели нас вплотную к выводу, что планетных систем в Галактике огромное количество, а наша Солнечная система может быть не столько исключением, сколько правилом в мире звезд. Все же это весьма вероятное предположение пока еще строго не доказано (см. гл. 10).

Развитие звездной космогонии также имело и имеет решающее значение для проблемы возникновения и развития жизни во Вселенной. Уже теперь мы знаем, какие звезды молодые, какие старые, как долго звезды излучают на том почти постоянном уровне, который необходим для поддержания жизни на обращающихся вокруг них планетах. Наконец, звездная космогония дает далекий прогноз будущего нашего Солнца, что имеет, конечно, решающее значение для судеб жизни на Земле. Таким образом, достижения астрофизики за последние 20—30 лет сделали возможным научный подход к проблеме множественности обитаемых миров.

Другое важнейшее «направление атаки» этой проблемы — биологические и биохимические исследования. Проблема жизни — в значительной степени химическая проблема. Каким способом и при каких внешних условиях мог происходить синтез сложных органических соединений, итогом которого было появление на планете первых «крупиц» живого вещества? На протяжении последних десятилетий биохимики существенно продвинули вперед эту проблему. Здесь они прежде всего опираются на результаты лабораторных экспериментов. Все же, как представляется автору этой книги, только в последние годы появилась возможность подойти к вопросу о происхождении жизни на Земле, а следовательно, и на других планетах. Только сейчас начинает приоткрываться завеса, над «святая святых» живой субстанции — наследственностью.

Выдающиеся успехи генетики и прежде всего выяснение «кибернетического смысла» дезоксирибонуклеиновой и рибонуклеиновой кислот настоятельно требуют нового определения самого основного понятия «жизнь». Все более ясным становится положение, что проблема происхождения жизни в значительной степени проблема генетическая. Огромные успехи молекулярной биологии позволяют надеяться, что эта важнейшая проблема естествознания будет решена в обозримом будущем.

Принципиально новый этап в развитии представлений о множественности обитаемых миров начался с запуска в нашей стране первого искусственного спутника Земли. За тридцать лет, истекших после памятного дня 4 октября 1957 г., были достигнуты поразительные успехи в овладении и изучении ближайших к нашей планете областей космического пространства. Апофеозом этих успехов были триумфальные полеты советских и американских космонавтов. Люди как-то вдруг «весомо, грубо, зримо» почувствовали, что они населяют очень маленькую планетку, окруженную безграничным космическим пространством. Конечно, всем им в школах преподавали (чаще всего довольно плохо) астрономию, и они «теоретически» знали место Земли в космосе. Однако в своей конкретной деятельности люди руководствовались, если так можно выразиться, «практическим геоцентризмом». Поэтому нельзя даже переоценить переворот в сознании людей, которым ознаменовалось начало новой эры в истории человечества — эры непосредственного изучения и, в перспективе, покорения космоса.

Вопрос о жизни на других мирах, бывший до недавнего времени чисто абстрактным, сейчас приобретает реальное практическое значение. В ближайшие годы он будет, если говорить о планетах Солнечной системы, окончательно решен экспериментально. Специальные приборы — индикаторы жизни — посылались и будут посылаться на поверхности планет и дадут уверенный ответ: есть ли там жизнь и если есть, то какая. Недалеко то время, когда астронавты высадятся на Марсе, а может быть, даже на загадочной негостеприимной Венере, и смогут изучать там жизнь (если она, конечно, есть) теми же методами, что и биологи на Земле. Скорее всего, однако, никаких, даже самых примитивных форм жизни они там не найдут, на что указывают результаты уже выполненных экспериментов.

Как выражение огромного интереса широких слоев народа к проблеме обитаемости других миров следует рассматривать появление в последние три десятилетия ряда работ крупных физиков и астрономов, в которых строго научно рассматривается проблема установления связи с разумными существами, населяющими другие планетные системы. Уже состоялся ряд научных конференций, посвященных внеземным цивилизациям, — в США и в нашей стране. При разработке этой увлекательной проблемы ученые не могут замыкаться в рамки своей специальности. С необходимостью надо строить те или иные гипотезы о путях развития цивилизаций в перспективе тысяч и миллионов лет. А это, право же, нелегкая и не совсем определенная задача... И тем не менее ее надо решать, так как она имеет совершенно конкретный смысл, а главное, правильность решения может быть в принципе проверена критерием практики.

Цель этой книги — ознакомить широкие круги читателей, интересующихся увлекательной проблемой жизни во Вселенной, с современным состоянием этой проблемы. Мы подчеркиваем — «с современным», так как развитие наших представлений о множественности обитаемых миров сейчас идет достаточно быстро. Кроме того, в отличие от других книг, посвященных этой проблеме (например, А. И. Опарин и В. Г. Фесенков «Жизнь во Вселенной» и Г. Спенсер Джонс «Жизнь на других мирах»), где преимущественно рассматривается вопрос о жизни только на планетах Солнечной системы — Марсе и Венере — на основе безнадежно устарелых данных, мы уделили достаточно много внимания другим планетным системам. Наконец, анализ возможностей разумной жизни во Вселенной и проблемы установления связи между цивилизациями, разделенными межзвездными расстояниями, насколько нам известно, ни в одной книге до 1962 г., когда было написано первое издание этой книги, не проводился.

Эта книга состоит из трех частей. Первая часть содержит астрономические сведения, необходимые для понимания современных представлений об эволюции галактик, звезд и планетных систем. Во второй части рассматриваются условия возникновения жизни на какой-нибудь планете. Кроме того, здесь обсуждается вопрос об обитаемости Марса, Венеры и других планет Солнечной системы. В заключение этой части критически рассматриваются современные варианты гипотезы панспермии. Наконец, третья часть содержит анализ возможности разумной жизни в отдельных областях Вселенной. Особое внимание обращается на проблему установления контактов между цивилизациями разных планетных систем. По своему характеру третья часть книги отличается от первых двух, которые излагают конкретные итоги и результаты развития науки в соответствующих областях. По необходимости в этой части преобладает гипотетический элемент — ведь пока мы еще не установили контактов с инопланетными цивилизациями и, в сущности говоря, неизвестно, когда установим и установим ли вообще... Но это ни в коей степени не означает, что эта часть лишена научного содержания и является чистой фантастикой. Напротив, именно здесь анализируются, и притом по возможности строго, новейшие достижения науки и техники, которые в будущем могут привести к успеху. Вместе с тем эта часть книги позволяет дать некоторое реальное представление о мощи человеческого разума даже на современном этапе его развития. Ведь уже сейчас человечество своей активной деятельностью стало фактором космического значения. Чего же можно ожидать через несколько столетий?

 


Часть первая

АСТРОНОМИЧЕСКИЙ

АСПЕКТ

ПРОБЛЕМЫ

И страшным, страшным креном

К другим каким-нибудь

Неведомым вселенным

Повернут Млечный Путь...

Б. Пастернак

Масштабы Вселенной и ее строение

Если бы астрономы-профессионалы постоянно и ощутимо представляли себе чудовищную величину космических расстояний и интервалов времени эволюции небесных светил, вряд ли они могли успешно развивать науку, которой посвятили свою жизнь. Привычные нам с детства пространственно-временные масштабы настолько ничтожны по сравнению с космическими, что когда это доходит до сознания, то буквально захватывает дух. Занимаясь какой-нибудь проблемой космоса, астроном либо решает некую математическую задачу (это чаще всего делают специалисты по небесной механике и астрофизики-теоретики), либо занимается усовершенствованием приборов и методов наблюдений, либо же строит в своем воображении, сознательно или бессознательно, некоторую небольшую модель исследуемой космической системы. При этом основное значение имеет правильное понимание относительных размеров изучаемой системы (например, отношение размеров деталей данной космической системы, отношение размеров этой системы и других, похожих или непохожих на нее, и т. д.) и интервалов времени (например, отношение скорости протекания данного процесса к скорости протекания какого-либо другого).

Автор этой книги довольно много занимался, например, солнечной короной и Галактикой. И всегда они представлялись ему неправильной формы сфероидальными телами примерно одинаковых размеров — что-нибудь около 10 см... Почему 10 см? Этот образ возник подсознательно, просто потому, что слишком часто, раздумывая над тем или иным вопросом солнечной или галактической физики, автор чертил в обыкновенной тетради (в клеточку) очертания предметов своих размышлений. Чертил, стараясь придерживаться масштабов явлений. По одному очень любопытному вопросу, например, можно было провести интересную аналогию между солнечной короной и Галактикой (вернее, так называемой «галактической короной»). Конечно, автор этой книги очень хорошо, так сказать, «умом» знал, что размеры галактической короны в сотни миллиардов раз больше, чем размеры солнечной. Но он спокойно забывал об этом. А если в ряде случаев большие размеры галактической короны приобретали некоторое принципиальное значение (бывало и так), это учитывалось формально-математически. И все равно зрительно обе «короны» представлялись одинаково маленькими...

Если бы автор в процессе этой работы предавался философским размышлениям о чудовищности размеров Галактики, о невообразимой разреженности газа, из которого состоит галактическая корона, о ничтожности нашей малютки-планеты и собственного бытия и о прочих других не менее правильных предметах, работа над проблемами солнечной и галактической корон прекратилась бы автоматически...

Пусть простит мне читатель это «лирическое отступление». Я не сомневаюсь, что и у других астрономов возникали такие же мысли, когда они работали над своими проблемами. Мне кажется, что иногда полезно поближе познакомиться с «кухней» научной работы...

Если мы хотим на страницах этой книги обсуждать волнующие вопросы о возможности разумной жизни во Вселенной, то прежде всего нужно будет составить правильное представление о ее пространственно-временных масштабах. Еще сравнительно недавно земной шар представлялся человеку огромным. Свыше трех лет потребовалось отважным сподвижникам Магеллана, чтобы 465 лет тому назад ценой неимоверных лишений совершить первое кругосветное путешествие. Немногим более 100 лет прошло с того времени, когда находчивый герой фантастического романа Жюля Верна совершил, пользуясь последними достижениями техники того времени, путешествие вокруг света за 80 суток. И прошло всего лишь 26 лет с тех памятных для всего человечества дней, когда первый советский космонавт Гагарин облетел на легендарном космическом корабле «Восток» земной шар за 89 мин. И мысли людей невольно обратились к огромным пространствам космоса, в которых затерялась небольшая планета Земля...

Наша Земля — одна из планет Солнечной системы. По сравнению с другими планетами она расположена довольно близко к Солнцу, хотя и не является самой близкой. Среднее расстояние от Солнца до Плутона — самой далекой планеты Солнечной системы — в 40 раз больше среднего расстояния от Земли до Солнца. В настоящее время неизвестно, имеются ли в Солнечной системе планеты, еще более удаленные от Солнца, чем Плутон, Можно только утверждать, что если такие планеты и есть, то они сравнительно невелики. Условно размеры Солнечной системы можно принять равными 50—100 астрономическим единицам (Астрономическая единица — среднее расстояние от Земли до Солнца, равное 149600 тыс. км), или около 10 млрд. км. По нашим земным масштабам это очень большая величина, примерно в 1 миллион раз превосходящая диаметр Земли.

Мы можем более наглядно представить относительные масштабы Солнечной системы следующим образом. Пусть Солнце изображается биллиардным шаром диаметром 7 см.. Тогда ближайшая к Солнцу планета — Меркурий находится от него в этом масштабе на расстоянии 280 см, Земля — на расстоянии 760 см, гигантская планета Юпитер удалена на расстояние около 40 м, а самая дальняя планета — во многих отношениях пока еще загадочный Плутон — на расстояние около 300 м. Размеры земного шара в этом масштабе несколько больше 0,5 мм, лунный диаметр — немногим больше 0,1 мм, а орбита Луны имеет диаметр около 3 см.

Даже самая близкая к нам звезда — Проксима Центавра удалена от нас на такое большое расстояние, что по сравнению с ним межпланетные расстояния в пределах Солнечной системы кажутся сущими пустяками. Читатели, конечно, знают, что для измерения межзвездных расстояний такой единицей длины, как километр, почти никогда не пользуются (Пожалуй, только скорости звезд и планет в астрономии выражаются в единицах «километр в секунду»). Эта единица измерений (так же как сантиметр, дюйм и др.) возникла из потребностей практической деятельности человечества на Земле. Она совершенно непригодна для оценки космических расстояний, слишком больших по сравнению с километром.

В популярной литературе, а иногда и в научной, для оценки межзвездных и межгалактических расстояний как единицу измерения употребляют «световой год». Это такое расстояние, которое свет, двигаясь со скоростью 300 тыс. км/с, проходит за год. Легко убедиться, что световод год равен 9,46 • 1012 км, или около 10000 млрд. км.

В научной литературе для измерения межзвездных и межгалактических расстояний обычно применяется особая единица, получившая название «парсек»; 1 парсек (пк) равен 3,26 светового года. Парсек определяется как такое расстояние, с которого радиус земной орбиты виден под углом в 1 сек. дуги. Это очень маленький угол. Достаточно сказать, что под таким углом монета в одну копейку видна с расстояния в 3 км.

Ни одна из звезд — ближайших соседок Солнечной системы — не находится к нам ближе, чем на 1 пк. Например, упомянутая Проксима Центавра удалена от нас на расстояние около 1,3 пк. В том масштабе, в котором мы изобразили Солнечную систему, это соответствует 2 тыс. км. Все это хорошо иллюстрирует большую изолированность нашей Солнечной системы от окружающих звездных систем; некоторые из этих систем, возможно, имеют с ней много сходства.

Но окружающие Солнце звезды и само Солнце составляют лишь ничтожно малую часть гигантского коллектива звезд и туманностей, который называется «Галактикой». Это скопление звезд мы видим в ясные безлунные ночи как пересекающую небо полосу Млечного Пути. Галактика имеет довольно сложную структуру. В первом, самом грубом приближении мы можем считать, что звезды и туманности, из которых она состоит, заполняют объем, имеющий форму сильно сжатого эллипсоида вращения. Часто в популярной литературе форму Галактики сравнивают с двояковыпуклой линзой. На самом деле все обстоит значительно сложнее, и нарисованная картина является слишком грубой. В действительности оказывается, что разные типы звезд совершенно по-разному концентрируются к центру Галактики и к ее «экваториальной плоскости». Например, газовые туманности, а также очень горячие массивные звезды сильно концентрируются к экваториальной плоскости Галактики (на небе этой плоскости соответствует большой круг, проходящий через центральные части Млечного Пути). Вместе с тем они не обнаруживают значительной концентрации к галактическому центру. С другой стороны, некоторые типы звезд и звездных скоплений (так называемые «шаровые скопления», рис. 2 (не сканировался)) почти никакой концентрации к экваториальной плоскости Галактики не обнаруживают, но зато характеризуются огромной концентрацией по направлению к ее центру. Между этими двумя крайними типами пространственного распределения (которое астрономы называют «плоское» и «сферическое») находятся все промежуточные случаи. Все же оказывается, что основная часть звезд в Галактике находится в гигантском диске, диаметр которого около 100 тыс. световых лет, а толщина около 1500 световых лет. В этом диске насчитывается несколько больше 150 млрд. звезд самых различных типов. Наше Солнце — одна из этих звезд, находящаяся на периферии Галактики вблизи от ее экваториальной плоскости (точнее, «всего лишь» на расстоянии около 30 световых лет — величина достаточно малая по сравнению с толщиной звездного диска).

Расстояние от Солнца до ядра Галактики (или ее центра) составляет около 30 тыс. световых лет. Звездная плотность в Галактике весьма неравномерна. Выше всего она в области галактического ядра, где, по последним данным, достигает 2 тыс. звезд на кубический парсек, что почти в 20 тыс. раз больше средней звездной плотности в окрестностях Солнца. (В самом центре галактического ядра в области поперечником в 1 пк находится, по-видимому, несколько миллионов звезд.) Кроме того, звезды имеют тенденцию образовывать отдельные группы или скопления. Хорошим примером такого скопления являются Плеяды, которые видны на нашем зимнем небе (рис. 3 (не сканировался)).

В Галактике имеются и структурные детали гораздо больших масштабов. Исследованиями последних лет доказано, что туманности, а также горячие массивные звезды распределены вдоль ветвей спирали. Особенно хорошо спиральная структура видна у других звездных систем — галактик (с маленькой буквы, в отличие от нашей звездной системы — Галактики). Одна из таких галактик изображена на рис. 4 (не сканировался). Установить спиральную структуру Галактики, в которой мы сами находимся, оказалось в высшей степени трудно.

Звезды и туманности в пределах Галактики движутся довольно сложным образом. Прежде всего, они участвуют во вращении Галактики вокруг оси, перпендикулярной к ее экваториальной плоскости. Это вращение не такое, как у твердого тела: различные участки Галактики имеют различные периоды вращения. Так, Солнце и окружающие его в огромной области размерами в несколько сотен световых лет звезды совершают полный оборот за время около 200 млн. лет. Так как Солнце вместе с семьей планет существует, по-видимому, около 5 млрд. лет, то за время своей эволюции (от рождения из газовой туманности до нынешнего состояния) оно совершило примерно 25 оборотов вокруг оси вращения Галактики. Мы можем сказать, что возраст Солнца — всего лишь 25 «галактических лет», скажем прямо — возраст цветущий...

Скорость движения Солнца и соседних с ним звезд по их почти круговым галактическим орбитам достигает 250 км/с. (Полезно запомнить простое правило: скорость в 1 пк за 1 млн. лет почти равна скорости в 1 км/с. Предоставляем читателю убедиться в этом.) На это регулярное движение вокруг галактического ядра накладываются хаотические, беспорядочные движения звезд. Скорости таких движений значительно меньше — порядка 10—50 км/с, причем у объектов разных типов они различны. Меньше всего скорости у горячих массивных звезд (6—8 км/с), у звезд солнечного типа они около 20 км/с. Чем меньше эти скорости, тем более «плоским» является распределение данного типа звезд.

В том масштабе, которым мы пользовались для наглядного представления Солнечной системы, размеры Галактики будут составлять 60 млн. км — величина, уже довольно близкая к расстоянию от Земли до Солнца. Отсюда ясно, что по мере проникновения во все более удаленные области Вселенной этот масштаб уже не годится, так как теряет наглядность. Поэтому мы примем другой масштаб. Мысленно уменьшим земную орбиту до размеров самой внутренней орбиты атома водорода в классической модели Бора. Напомним, что радиус этой орбиты равен 0,53 • 10-8 см. Тогда ближайшая звезда будет находиться на расстоянии приблизительно 0,014 мм, центр Галактики — на расстоянии около 10 см, а размеры нашей звездной системы будут около 35 см. Диаметр Солнца будет иметь микроскопические размеры: 0,0046 Å (ангстрем — единица длины, равная 10-8 см).

Мы уже подчеркивали, что звезды удалены друг от друга на огромные расстояния, и тем самым практически изолированы. В частности, это означает, что звезды почти никогда не сталкиваются друг с другом, хотя движение каждой из них определяется полем силы тяготения, создаваемым всеми звездами в Галактике. Если мы будем рассматривать Галактику как некоторую область, наполненную газом, причем роль газовых молекул и атомов играют звезды, то мы должны считать этот газ крайне разреженным. В окрестностях Солнца среднее расстояние между звездами примерно в 10 млн. раз больше, чем средний диаметр звезд. Между тем при нормальных условиях в обычном воздухе среднее расстояние между молекулами всего лишь в несколько десятков раз больше размеров последних. Чтобы достигнуть такой же степени относительного разрежения, плотность воздуха следовало бы уменьшить по крайней мере в 1018 раз! Заметим, однако, что в центральной области Галактики, где звездная плотность относительно высока, столкновения между звездами время от времени будут происходить. Здесь следует ожидать приблизительно одно столкновение каждый миллион лет, в то время как в «нормальных» областях Галактики за всю историю эволюции нашей звездной системы, насчитывающую, по крайней мере, 10 млрд. лет, столкновений между звездами практически не было (см. гл. 9).

Мы кратко обрисовали масштаб и самую общую структуру той звездной системы, к которой принадлежит наше Солнце. При этом совершенно не рассматривались те методы, при помощи которых в течение многих лет несколько поколений астрономов шаг за шагом воссоздавали величественную картину строения Галактики. Этой важной проблеме посвящены другие книги, к которым мы отсылаем интересующихся читателей (например, Б. А. Воронцов-Вельяминов «Очерки о Вселенной», Ю. Н. Ефремов «В глубины Вселенной»). Наша задача — дать только самую общую картину строения и развития отдельных объектов Вселенной. Такая картина совершенно необходима для понимания этой книги.

Уже несколько десятилетий астрономы настойчиво изучают другие звездные системы, в той или иной степени сходные с нашей. Эта область исследований получила название «внегалактической астрономии». Она сейчас играет едва ли не ведущую роль в астрономии. В течение последних трех десятилетий внегалактическая астрономия добилась поразительных успехов. Понемногу стали вырисовываться грандиозные контуры Метагалактики, в состав которой наша звездная система входит как малая частица. Мы еще далеко не все знаем о Метагалактике. Огромная удаленность объектов создает совершенно специфические трудности, которые разрешаются путем применения самых мощных средств наблюдения в сочетании с глубокими теоретическими исследованиями. Все же общая структура Метагалактики в последние годы в основном стала ясной.

Мы можем определить Метагалактику как совокупность звездных систем — галактик, движущихся в огромных пространствах наблюдаемой нами части Вселенной. Ближайшие к нашей звездной системе галактики — знаменитые Магеллановы Облака, хорошо видные на небе южного полушария как два больших пятна примерно такой же поверхностной яркости, как и Млечный Путь. Расстояние до Магеллановых Облаков «всего лишь» около 200 тыс. световых лет, что вполне сравнимо с общей протяженностью нашей Галактики. Другая «близкая» к нам галактика — это туманность в созвездии Андромеды. Она видна невооруженным глазом как слабое световое пятнышко 5-й звездной величины. (Поток излучения от звезд измеряется так называемыми «звездными величинами». По определению, поток от звезды (m +1)-й величины в 2,512 раза меньше, чем от звезды m-й величины. Звезды слабее 6-й величины невооруженным глазом не видны. Самые яркие звезды имеют отрицательную звездную величину (например, у Сириуса она равна -1,5.) На самом деле это огромный звездный мир, по количеству звезд и полной массе раза в три превышающей нашу Галактику, которая в свою очередь является гигантом среди галактик. Расстояние до туманности Андромеды, или, как ее называют астрономы, М31 (это означает, что в известном каталоге туманностей Мессье она занесена под № 31), около 1800 тыс. световых лет, что примерно в 20 раз превышает размеры Галактики. Туманность М31 имеет явно выраженную спиральную структуру и по многим своим характеристикам весьма напоминает нашу Галактику. Рядом с ней находятся ее небольшие спутники эллипсоидальной формы (рис. 5 (не сканировался)). На рис. 6 (не сканировался) приведены фотографии нескольких сравнительно близких к нам галактик. Обращает на себя внимание большое разнообразие их форм. Наряду со спиральными системами (такие галактики обозначаются символами Sa, Sb и Sc в зависимости от характера развития спиральной структуры; при наличии проходящей через ядро «перемычки» (рис. 6а, (не сканировался)) после буквы S ставится буква В) встречаются сфероидальные и эллипсоидальные, лишенные всяких следов спиральной структуры, а также «неправильные» галактики, хорошим примером которых могут служить Магеллановы Облака.

В большие телескопы наблюдается огромное количество галактик. Если галактик ярче видимой 12-й величины насчитывается около 250, то ярче 16-й — уже около 50 тыс. Самые слабые объекты, которые на пределе может сфотографировать телескоп-рефлектор с диаметром зеркала 5 м, имеют 24, 5-ю величину. Оказывается, что среди миллиардов таких слабейших объектов большинство составляют галактики. Многие из них удалены от нас на расстояния, которые свет проходит за миллиарды лет. Это означает, что свет, вызвавший почернение пластинки, был излучен такой удаленной галактикой еще задолго до архейского периода геологической истории Земли!

Иногда среди галактик попадаются удивительные объекты, например «радиогалактики». Это такие звездные системы, которые излучают огромное количество энергии в радиодиапазоне. У некоторых радиогалактик поток радиоизлучения в несколько раз превышает поток оптического излучения, хотя в оптическом диапазоне их светимость очень велика — в несколько раз превосходит полную светимость нашей Галактики. Напомним, что последняя складывается из излучения сотен миллиардов звезд, многие из которых в свою очередь излучают значительно сильнее Солнца. Классический пример такой радиогалактики — знаменитый объект Лебедь А. В оптическом диапазоне это два ничтожных световых пятнышка 17-й звездной величины (рис. 7, (не сканировался)). На самом деле их светимость очень велика, примерно в 10 раз больше, чем у нашей Галактики. Слабой эта система кажется потому, что она удалена от нас на огромное расстояние — 600 млн. световых лет. Однако поток радиоизлучения от Лебедя А на метровых волнах настолько велик, что превышает даже поток радиоизлучения от Солнца (в периоды, когда на Солнце нет пятен). Но ведь Солнце очень близко — расстояние до него «всего лишь» 8 световых минут; 600 млн. лет — и 8 мин! А ведь потоки излучения, как известно, обратно пропорциональны квадратам расстояний!

Спектры большинства галактик напоминают солнечный; в обоих случаях наблюдаются отдельные темные линии поглощения на довольно ярком фоне. В этом нет ничего неожиданного, так как излучение галактик — это излучение миллиардов входящих в их состав звезд, более или менее похожих на Солнце. Внимательное изучение спектров галактик много лет назад позволило сделать одно открытие фундаментальной важности. Дело в том, что по характеру смещения длины волны какой-либо спектральной линии по отношению к лабораторному стандарту можно определить скорость движения излучающего источника по лучу зрения. Иными словами, можно установить, с какой скоростью источник приближается или удаляется.

Если источник света приближается, спектральные линии смещаются в сторону более коротких волн, если удаляется — в сторону более длинных. Это явление называется «эффектом Доплера». Оказалось, что у галактик (за исключением немногих, самых близких к нам) спектральные линии всегда смещены в длинноволновую часть спектра («красное смещение» линий), причем величина этого смещения тем больше, чем более удалена от нас галактика.

Это означает, что все галактики удаляются от нас, причем скорость «разлета» по мере удаления галактик растет. Она достигает огромных значений. Так, например, найденная по красному смещению скорость удаления радиогалактики Лебедь А близка к 17 тыс. км/с. Еще двадцать пять лет назад рекорд принадлежал очень слабой (в оптических лучах 20-й величины) радиогалактике 3С 295. В 1960 г. был получен ее спектр. Оказалось, что известная ультрафиолетовая спектральная линия, принадлежащая ионизованному кислороду, смещена в оранжевую область спектра! Отсюда легко найти, что скорость удаления этой удивительной звездной системы составляет 138 тыс. км/с, или почти половину скорости света! Радиогалактика 3С 295 удалена от нас на расстояние, которое свет проходит за 5 млрд. лет. Таким образом, астрономы исследовали свет, который был излучен тогда, когда образовывались Солнце и планеты, а может быть, даже «немного» раньше... С тех пор открыты еще более удаленные объекты (гл. 6).

Причины расширения системы, состоящей из огромного количества галактик, мы здесь касаться не будем. Этот сложный вопрос является предметом современной космологии. Однако сам факт расширения Вселенной имеет большое значение для анализа развития жизни в ней (см. гл. 7).

На общее расширение системы галактик накладываются беспорядочные скорости отдельных галактик, обычно равные нескольким сотням километров в секунду. Именно поэтому ближайшие к нам галактики не обнаруживают систематического красного смещения. Ведь скорости беспорядочных (так называемых «пекулярных») движений для этих галактик больше регулярной скорости красного смещения. Последняя растет по мере удаления галактик приблизительно на 50 км/с, на каждый миллион парсек. Поэтому для галактик, расстояния до которых не превосходят нескольких миллионов парсек, беспорядочные скорости превышают скорость удаления, обусловленную красным смещением. Среди близких галактик наблюдаются и такие, которые приближаются к нам (например, туманность Андромеды М31).

Галактики не распределены в метагалактическом пространстве равномерно, т. е. с постоянной плотностью. Они обнаруживают ярко выраженную тенденцию образовывать отдельные группы или скопления. В частности, группа из примерно 20 близких к нам галактик (включая нашу Галактику) образует так называемую «местную систему». В свою очередь местная система входит в большое скопление галактик, центр которого находится в той части неба, на которую проектируется созвездие Девы. Это скопление насчитывает несколько тысяч членов и принадлежит к числу самых больших. На рис. 8 (не сканировался) приведена фотография известного скопления галактик в созвездии Северной Короны, насчитывающего сотни галактик. В пространстве между скоплениями плотность галактик в десятки раз меньше, чем внутри скоплений.

Обращает на себя внимание разница между скоплениями звезд, образующими галактики, и скоплениями галактик. В первом случае расстояния между членами скопления огромны по сравнению с размерами звезд, в то время как средние расстояния между галактиками в скоплениях галактик всего лишь в несколько раз больше, чем размеры галактик. С другой стороны, число галактик в скоплениях не идет ни в какое сравнение с числом звезд в галактиках. Если рассматривать совокупность галактик как некоторый газ, где роль молекул играют отдельные галактики, то мы должны считать эту среду чрезвычайно вязкое.

Как же выглядит Метагалактика в нашей модели, где земная орбита уменьшена до размеров первой орбиты атома Бора? В этом масштабе расстояние до туманности Андромеды будет несколько больше 6 м, расстояние до центральной части скопления галактик в Деве, куда входит и наша местная система галактик, будет порядка 120 м, причем такого же порядка будет размер самого скопления. Радиогалактика Лебедь А будет теперь удалена уже на вполне «приличное» расстояние — 2,5 км, а расстояние до радиогалактики 3С 295 достигнет 25 км...

Мы познакомились в самом общем виде с основными структурными особенностями и с масштабами Вселенной. Это как бы застывший кадр ее развития. Не всегда она была такой, какой мы теперь ее наблюдаем. Все во Вселенной меняется: появляются, развиваются и «умирают» звезды и туманности, развивается закономерным образом Галактика, меняются сама структура и масштабы Метагалактики (хотя бы по причине красного смещения). Поэтому нарисованную статическую картину Вселенной необходимо дополнить динамической картиной эволюции отдельных космических объектов, из которых она образована, и всей Вселенной как целого.

Что касается эволюции отдельных звезд и туманностей, образующих галактики, то об этом речь будет в гл. 4. Здесь мы только скажем, что звезды рождаются из межзвездной газопылевой среды, некоторое время (в зависимости от массы) спокойно излучают, после чего более или менее драматическим образом «умирают».

Открытие в 1965 г. «реликтового» излучения (см. гл. 7) со всей наглядностью показало, что на самых ранних этапах эволюции Вселенная качественно отличалась от своего современного состояния. Главное — это то, что тогда не было ни звезд, ни галактик, ни тяжелых элементов. И, конечно, не было жизни. Мы наблюдаем грандиозный процесс эволюции Вселенной от простого к сложному. Такое же направление эволюции имеет и развитие жизни на Земле. Во Вселенной скорость эволюции вначале была значительно выше, чем в современную эпоху. Похоже, однако, что в развитии жизни на Земле наблюдается обратная картина. Это наглядно видно из модели «космической хронологии», представленной в таблице 1, предложенной американским планетологом Саганом. Выше мы довольно подробно развили пространственную модель Вселенной, основывающуюся на выборе того или иного линейного масштаба. В сущности говоря, тот же метод используется в табл.1. Все время существования Вселенной (которое для определенности принимается равным 15 миллиардам реальных «земных» годов, причем здесь возможна ошибка в несколько десятков процентов) моделируется некоторым воображаемым «космическим годом». Нетрудно убедиться, что одна секунда «космического» года равна 500 вполне реальным годам. При таком масштабе каждой эпохе развития Вселенной ставится в соответствие определенная дата (и время «суток») «космического» года.

Легко видеть, что эта таблица в своей основной части сугубо «антропоцентрична»: даты и моменты космического календаря после «сентября» и, особенно, всего специально выделенного «декабря», отражают определенные этапы развития жизни на Земле. Этот календарь совершенно иначе выглядел бы для обитателей какой-нибудь планеты, обращающейся вокруг «своей» звезды в какой-нибудь удаленной галактике. Тем не менее само сопоставление темпа космической и земной эволюции в высшей степени впечатляюще.


Таблица 1    
  Большой Взрыв   1 января 0ч 0м 0с  
  Образование галактик (z~10)   10 января  
  Образование Солнечной системы   9 сентября  
  Образование Земли   14 сентября  
  Возникновение жизни на Земле   25 сентября  
  Образование древнейших скал на Земле   2 октября  
  Появление бактерий и сине-зеленых водорослей   9 октября  
  Возникновение фотосинтеза   12 ноября  
  Первые клетки с ядром   15 ноября  
     

 

декабрь

Воскресенье   Понедельник   Вторник   Среда   Четверг   Пятница   Суббота  
    1 Возникновение кислородной атмосферы на Земле       Мощная вулканическая деятельность на Марсе б  
             
    Первые черви     Океанский планктон. Трилобиты   Ордовик. Первые рыбы   Силур. Растения колонизируют сушу
Мел. Первые цветы   Первые амфибии и крылатые насекомые   Карбон. Первые деревья Первые рептилии Пермь. Первые динозавры   Начало мезозоя   Триас. Первые млеко-питающие   Юра. Первые птицы  
Девон. Первые насекомые Животные колонизируют сушу Третичный период. Первые приматы   Первые гоминиды   Четвертичный период. Первые люди (~ 22ч30м)            

 

 




<== предыдущая лекция | следующая лекция ==>
В эволюционном Путешествии | Основные характеристики звезд
Поделиться с друзьями:


Дата добавления: 2016-10-30; Мы поможем в написании ваших работ!; просмотров: 1636 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Начинать всегда стоит с того, что сеет сомнения. © Борис Стругацкий
==> читать все изречения...

2298 - | 2049 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.017 с.