Свойства ферромагнитных материалов оценивают обычно по кривым намагничивания, представляющим собой зависимость магнитной индукции от напряженности магнитного поля В (Н). Кривые намагничивания получают опытным путем. Напряженность изменяют за счет изменения тока намагничивающей обмотки, расположенной на испытуемом образце. Определение напряженности производят с помощью закона полного тока. Для определения магнитной индукции используют индукционное действие магнитного поля.
Если ферромагнитный материал был размагничен, то при увеличении напряженности Н магнитная индукция В изменяется в соответствии с кривой 1 первоначального намагничивания (рис. 6.6). Последней соответствует на том же рисунке кривая 2 изменения магнитной проницаемости μа(Н), построенная согласно формуле μа = В/Н.
При относительно небольших напряженностях, когда материал еще не насыщен (участок Оа), увеличение Н сопровождается значительным увеличением В. Именно на этом участке μа = В/Н >> μ0 и μ r >> 1. Максимальному значению магнитной проницаемости соответствует точка А, которая может быть получена, если через начало координат провести касательную к кривой 1.
Рис. 6.6. Кривые намагничивания В (Н) и зависимость μa(Н) ферромагнитного материала. Зависимость B 0(Н 0) для воздуха |
С увеличением Н на участке ab материал все более насыщается и темп роста В снижается.
На участке bс, соответствующем значительному насыщению ферромагнитного материала, увеличение напряженности приводит лишь к весьма малым приращениям магнитной индукции. Последняя возрастает на этом участке примерно в той же степени, что и в случае катушки без ферромагнитного магнитопровода (прямая 4 на рис. 6.6). Хотя при любых значениях напряженности ферромагнитного материала μа > μ0 и μ r > 1, при Н → ∞ μа → μ0 и μ r →1.
При уменьшении напряженности магнитная индукция изменяется в соответствии с кривой 3. Любому значению напряженности при ее уменьшении соответствует большее значение магнитной индукции, чем при увеличении Н. Если напряженность уменьшить до нуля, материал окажется намагниченным. Магнитная индукция Вr при Н = 0 называется индукцией остаточного намагничивания. Чтобы получить В < Вr, необходимо изменить направление напряженности в материале, что осуществляется путем изменения направления тока намагничивающей обмотки. При некотором значении I < 0 и Н с < 0 получим В = 0. Напряженность Нc называется коэрцитивной силой.
Если периодически и весьма медленно изменять напряженность от + Н 1 m до - Н 1 m, то после нескольких циклов перемагничивания магнитная индукция будет изменяться в пределах от + В 1 m до - В 1 m, в соответствии с кривой 1 на рис. 6.7, а, называемой статической петлей магнитного гистерезиса. При разных пределах изменения напряженности получим семейство статических симметричных петель магнитного гистерезиса. Существуют некоторые напряженности + Нm= + H s и - Нm= - H s, при превышении которых площадь, ограниченная петлей гистерезиса, остается постоянной. Петля гистерезиса 2 называется в этом случае предельной, а магнитная индукция B s — индукцией технического насыщения. Значения Вr и Н с определяются по предельной петле гистерезиса.
2.
Электронные генераторы
Генератор электрических колебаний – это нелинейное устройство, преобразующее энергию источника постоянного тока в энергию колебаний.
Генераторы широко используются в электронике: в радиоприемниках и телевизорах, в системах связи, компьютерах, промышленных системах управления и устройствах точного измерения времени.
Генератор – это электрическая цепь, которая генерирует периодический сигнал переменного тока. Частота сигнала может измеряться от нескольких герц до многих миллионов герц.
Выходное напряжение генератора может быть синусоидальным, прямоугольным или пилообразным в зависимости от типа генератора.
Когда колебательный контур возбуждается внешним источником постоянного тока, в нем возникают колебания. Эти колебания являются затухающими, поскольку активное сопротивление колебательного контура поглощает энергию тока. Для поддержания колебаний в колебательном контуре поглощенную энергию необходимо восполнить. Это осуществляется с помощью положительной обратной связи.
Положительная обратная связь – это подача в колебательный контур части выходного сигнала для поддержки колебаний. Сигнал обратной связи должен совпадать по фазе с сигналом в колебательном контуре.
На рис.3.1 изображена функциональная схема генератора.
Рис.3.1. Функциональная схема генератора.
Генератор можно разбить на 3 части. Частотозадающей цепью генератора обычно является LC колебательный контур. Усилитель увеличивает амплитуду выходного сигнала колебательного контура. Цепь обратной связи подает необходимое количество энергии в колебательный контур для поддержания колебаний. Таким образом, генератор – это схема с ОС (обратной связью), которая использует постоянный ток для получения переменного тока.
Билет 5