Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Характеристика КМДП и ТТЛ элементов




 

Микросхемы на комплементарных транзисторах строятся на основе МОП транзисторов с n- и p-каналами. Один и тот же потенциал открывает транзистор с n-каналом и закрывает транзистор с p-каналом. При формировании логической единицы открыт верхний транзистор, а нижний закрыт. В результате ток через микросхему не протекает. При формировании логического нуля открыт нижний транзистор, а верхний закрыт. И в этом случае ток через микросхему не протекает. Простейший логический элемент - это инвертор. Его схема изображена
на рисунке 1.6.

 

 

Рисунок 1.6 – Схема простейшего логического элемента

 

На этой схеме для упрощения понимания принципов работы микросхемы не показаны защитные и паразитные диоды. Особенностью микросхем на комплементарных МОП транзисторах является то, что в этих микросхемах в статическом режиме ток практически не потребляется. Потребление тока происходит только в момент переключения микросхемы из единичного состояния в нулевое и наоборот. Этим током производится перезаряд паразитной ёмкости нагрузки.

Схема логического элемента "И-НЕ" на КМОП микросхемах практически совпадает с упрощенной схемой "И" на ключах с электронным управлением, которую мы рассматривали ранее. Отличие заключается в том, что нагрузка подключается не к общему проводу схемы, а к источнику питания. Принципиальная схема элемента "2И-НЕ", выполненного на комплементарных МОП транзисторах приведена на рисунке 1.7.

 

 

Рисунок 1.7 – Схема элемента 2 И-НЕ

 

1. В этой схеме можно было бы применить в верхнем плече обыкновенный резистор, однако при формировании низкого уровня схема постоянно потребляла бы ток. Вместо этого, в качестве нагрузки используются p-МОП транзисторы. Эти транзисторы образуют активную нагрузку. Если на выходе требуется сформировать высокий потенциал, то транзисторы открываются, а если низкий - то закрываются.

2. В приведённой на рисунке 1.7 схеме ток от источника питания на выход микросхемы будет поступать через один из транзисторов, если хотя бы на одном из входов (или на обоих сразу) будет присутствовать низкий потенциал (уровень логического нуля). Если же на обоих входах будет присутствовать уровень логической единицы, то оба p-МОП транзистора будут закрыты и на выходе микросхемы сформируется низкий потенциал. В этой схеме, так же как и в схеме на рисунке 1.6, если транзисторы верхнего плеча будут открыты, то транзисторы нижнего плеча будут закрыты, поэтому в статическом состоянии ток микросхемой от источника питания потребляться не будет.

 

Особенности применения КМОП микросхем

Первой и основной особенностью КМОП микросхем является большое входное сопротивление этих микросхем. В результате на вход этой цифровой микросхемы может наводиться любое напряжение, в том числе и равное половине напряжения питания, и храниться на нём достаточно долго. При подаче на вход КМОП микросхемы половины питания открываются транзисторы как в верхнем, так и в нижнем плече выходного каскада микросхемы, в результате микросхема начинает потреблять недопустимо большой ток и может выйти из строя. Вывод: входы цифровых микросхем ни в коем случае нельзя оставлять неподключенными!

Второй особенностью КМОП микросхем является то, что они могут работать при отключенном питании. Однако работают они чаще всего неправильно. Эта особенность связана с конструкцией входного каскада КМОП микросхем. Полная схема КМОП инвертора приведена на рисунке 1.8.

 

 

Рисунок 1.8- Полная схема КМОП инвертора

 

Диоды VD1 и VD2 были введены для защиты входного каскада от пробоя статическим электричеством. В то же самое время при подаче на вход микросхемы высокого потенциала он через диод VD1 попадёт на шину питания микросхемы, и так как она потребляет достаточно малый ток, то микросхема начнёт работать. Однако в ряде случаев тока может не хватить. В результате микросхема может работать неправильно. Вывод: при неправильной работе микросхемы тщательно проверьте питание микросхемы, особенно выводы корпуса. При плохо пропаянном выводе отрицательного питания его потенциал будет отличаться от потенциала общего провода схемы.

Третья особенность КМОП микросхем связана с паразитными диодами VD3 и VD4, которые могут быть пробиты при неправильно подключенном источнике питания (микросхемы ТТЛ выдерживают кратковременную переполюсовку питания). Для защиты микросхем от переполюсовки питания следует в цепи питания предусмотреть защитный диод.

Четвёртая особенность КМОП микросхем - это протекание импульсного тока по цепи питания при переключении микросхемы из нулевого состояния в единичное и наоборот. В результате при переходе с ТТЛ микросхем на КМОП резко увеличивается уровень помех. В ряде случаев это важно и приходится отказываться от применения КМОП микросхем в пользу ТТЛ или BICMOS.

Микросхемы серии ТТЛ

Микросхемы комбинационного типа малой степени интеграции.

У нас в стране обширна номенклатура выпускаемых интегральных микросхем. Для построения устройств автоматики и вычислительной техники широкое применение находят цифровые микросхемы серии К 155, которые изготавливают по стандартной технологии биполярных микросхем транзисторно-транзисторной логики (ТТЛ). Имеется свыше 100 наименований микросхем серии К 155. При всех своих преимуществах - высоком быстродействии, обширной номенклатуре, хорошей помехоустойчивости - эти микросхемы обладают большой потребляемой мощностью. Поэтому им на смену выпускают микросхемы серии К555, принципиальное отличие которых - использование транзисторов с коллекторными переходами, зашунтированными диодами Шоттки. В результате транзисторы микросхем серии К555 не входят в насыщение, что существенно уменьшает задержку выключения транзисторов. К тому же они значительно меньших размеров, что уменьшает емкости их р-n-переходов. В результате при сохранении быстродействия микросхем серии К555 на уровне серии К155 удалось уменьшить ее потребляемую мощность примерно в 4...5 раз.

Дальнейшее развитие микросхем серий ТТЛ - разработка микросхем серии КР1533. Основное эксплуатационное отличие их от схем серии К555 - в 1.5...2 раза меньше потребляемая мощность при сохранении и повышении быстродействия.

Средняя задержка распространения элементов микросхем серии К155, К555, КР1533 примерно 15...20 нс. В случаях, когда требуется более высокое быстродействие, используют микросхемы серии КР531. Для сравнения основных параметров в табл. 1 приведены значения средней потребляемой мощности Рср и средней задержки tз.ср распространения микросхем ТТЛ указанных серий, а также стандартные значения входных Iвх и выходных Iвых токов и нагрузочной способности N указанных серий микросхем. Некоторые микросхемы допускают большие выходные токи и имеют большую нагрузочную способность, чем указано в табл. 1. Часть микросхем (особенно серии КР531) также имеют отличные от стандартных входные токи. Эти отличия специально указаны далее.

Стандартные выходные уровни лог. 1 составляют 2,4...2,7 В, лог. 0-0,36...0,5 В.

Напряжение питания микросхем серий ТТЛ 5 В +-5%, для серии КР1533 допуск на напряжение питания +-;10%

На рисунке 1.9 приведены зависимости выходного напряжения от входного для инвертирующих логических элементов упомянутых серий микросхем при температуре +20 С. Поскольку за порог переключения принимается входное напряжение, при котором выходное равно ему, его нетрудно найти по приведенным зависимостям как точку пересечения с прямой Uвых = Uвх. Из рисунка видно, что микросхемы серии КР1533 имеют наибольший порог переключения - 1,52 В и, как следствие, наибольшую помехоустойчивость.

 

 

Рисунок 1.9 – Зависимости выходного напряжения от входного для инвертирующих логических элементов

 

Микросхемы серий К555 и КР1533 можно применять вместо однотипных микросхем серии К 155 и совместно с ними, при этом следует иметь в виду, что их нагрузочная способность на микросхемы серии К155 составляет 5. Микросхемы серии КР531 следует применять только в случае необходимости высокого быстродействия, так как они создают большой уровень помех, к которым особенно чувствительны микросхемы серии К555, и потребляют большую мощность

 





Поделиться с друзьями:


Дата добавления: 2016-10-30; Мы поможем в написании ваших работ!; просмотров: 1257 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Неосмысленная жизнь не стоит того, чтобы жить. © Сократ
==> читать все изречения...

2311 - | 2015 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.008 с.