Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Последовательность операций




  1. Строим оси координат и устанавливаем на них шкалы, исходя из интервалов изменения измеренных величин. Начало оси абсцисс (время) берем при t=30 с, а начало оси ординат (расстояние) - при S=80 см. Размечаем ось абсцисс с шагом 10 с, а ось ординат с шагом 20 см.
  2. Наносим на координатную плоскость точки, представленные в таблице. Для каждой точки откладываем влево и вправо погрешность Dt в масштабе оси абсцисс, а вверх и вниз - погрешность DS в масштабе оси ординат.
  3. Исходя из предположения о равномерном движении, т.е. о линейной зависимости S(t)=v0t, проводим прямую с таким расчетом, чтобы она наилучшим образом проходила через все измеренные точки. При проведении прямой учитываем, что в данном опыте при t=0 путь S=0 независимо от скорости, т.е. согласно теоретической формуле продолжение прямой должно проходить через точку (0,0), которая находится за пределами рабочего участка координатной плоскости. Так как скорость v=dS/dt, а производная геометрически представляется тангенсом угла наклона касательной к графику функции, то для равномерного движения тангенс угла наклона прямой дает скорость v0. Находить из графика следует именно тангенс, т. е. отношение противолежащего катета к прилежащему, взятых в масштабных единицах соответствующих осей. Очевидно, что угол наклона прямой зависит от выбора масштаба на осях. Поэтому измерение угла с последующим определением его тангенса смысла не имеет.
  4. Для оценки погрешности проводим через экспериментальные точки еще две прямые - с максимальным и минимальным наклоном в пределах погрешностей большинства точек и с учетом того, что продолжения этих прямых должны пересекать точку (0,0). Определяем тангенс угла наклона этих прямых и устанавливаем интервал, в пределах которого находится искомая величина (скорость).

Окончательный результат построений показан на рис.3.

Рис. 3

Следует заметить, что графическая обработка опытных данных не столь строга, как аналитическая, зато она проста и наглядна.

В тех случаях, когда диапазон изменений измеряемой величины превышает порядок, при построении графика обычно применяют логарифмический масштаб. Для построения логарифмической шкалы по оси от начальной точки в некотором масштабе откладываются отрезки, равные десятичным логарифмам ряда чисел. Если отложен lg a, то около соответствующей точки ставится пометка a. Около начальной точки должна стоять пометка 1 (lg1=0). Таким образом, на логарифмической шкале расстояние от пометки 1 до пометки a равно в выбранном масштабе lg a. Так как lg(10 a)=1+ lg a, то пометки на логарифмической шкале на участке от 10 до 100 будут в точности соответствовать пометкам на участке от 1 до 10. Это же рассуждение может быть проведено и для других участков шкалы. Поэтому, для изображения чисел от 1 до 100 на логарифмической оси требуется увеличить длину оси всего в два раза по сравнению с осью, размеченной от 1 до 10. Пусть, например, на оси длиной 10 см требуется отобразить числа от 1 до 100. Тогда на одну декаду будет приходиться 5 см. Соответственно пометка 2 должна стоять на расстоянии lg2·5=1.5см от начала оси, пометка 3 - на расстоянии lg3·5=2.4 см, а пометка 30 - на расстоянии lg30·5=7.4 см. На рис.4 приведен пример участка оси с логарифмической шкалой.

Рис. 4





Поделиться с друзьями:


Дата добавления: 2016-10-30; Мы поможем в написании ваших работ!; просмотров: 394 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Велико ли, мало ли дело, его надо делать. © Неизвестно
==> читать все изречения...

2489 - | 2155 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.01 с.