Рассмотрим вначале элементарный объем dV=dxdydz в условиях одноосного напряженного состояния (рис. 1). Мысленно закрепим площадку х =0 (рис. 3). На противоположную площадку действует сила sx dydz. Эта сила совершает работу на перемещении ex dx. При увеличении напряжения от нулевого уровня до значения sx соответствующая деформация в силу закона Гука также увеличивается от нуля до значения ex, а работа пропорциональна заштрихованной на рис. 4 площади: dA =0,5sxex dV. Если пренебречь кинетической энергией и потерями, связанными с тепловыми, электромагнитными и другими явлениями, то в силу закона сохранения энергии совершаемая работа перейдет в потенциальную энергию, накапливаемую в процессе деформирования: dA=dU =0,5sxex dV. Величина Ф=dU/dV называется удельной потенциальной энергией деформации, имеющей смысл потенциальной энергии, накопленной в единице объема тела. В случае одноосного напряженного состояния
При одновременном действии напряжений sx, sy и sz на главных площадках (т. е. при отсутствии касательных напряжений) потенциальная энергия равна сумме работ, совершаемых силами sx dydz, sy dxdz, sz dxdy на соответствующих перемещениях ex dx, ey dy, ez dz. Удельная потенциальная энергия равна
(2.47)
В частном случае чистого сдвига в плоскости Оху, изображенном на рис. 5, сила txy dxdz совершает работу на перемещении gxy dy. Соответствующая этому случаю удельная потенциальная энергия деформации равна
Подобные соотношения будут иметь место при сдвиге в других плоскостях.
В общем случае напряженно-деформированного состояния будем иметь
(11)
Если деформации выразить через напряжения с помощью соотношений упругости (5) и (6), то получим эквивалентную форму записи через компоненты тензора напряжений
(12)
Выразив напряжения через деформации с использованием соотношений (6) и (10), получим еще одну форму записи для Ф - через компоненты тензора деформаций
Еще одну форму записи для удельной потенциальной энергии деформации получим, разложив тензоры напряжений и деформаций на шаровые тензоры и девиаторы. В результате (11) можно привести к одной из форм
(13)
Здесь введены обозначения для t - интенсивности касательных напряжений и g - интенсивности деформаций сдвига, которые выражаются через вторые инварианты J2 (ds) и J2 (de) девиаторов тензора напряжений и тензора деформаций следующим образом:
Первые слагаемые в (13) соответствуют произведению шаровых составляющих тензоров напряжений и деформаций, а вторые - произведению девиаторных составляющих. Так как шаровой тензор характеризует изменение объема, а девиатор - изменение формы, то соотношения (13) можно интерпретировать как разложение удельной потенциальной энергии на две составляющие: Ф=Ф0 + Фф, где Ф0 соответствует изменению объема без изменения формы, а Фф - изменению формы без изменения объема. Первая составляющая будет вычисляться через компоненты тензора напряжений следующим образом:
(14)
Удельную потенциальную энергию изменения формы проще найти не через интенсивность касательных напряжений, а как разность Ф - Ф0. Вычитая (14) из (12), после преобразований получим
9 Механические характеристики конструкционных материалов
Ключевые слова: упругое состояние; пластичное состояние; пределы пропорциональности, упругости, текучести, прочности.
Механические характеристики определяются следующими факторами:
- веществом, его структурой и свойствами;
- конструктивными особенностями элемента, т. е, размерами, формой, наличием концентраторов, состоянием поверхности;
- условиями при нагружении: температурой, скоростью, повторяемостью нагрузки и др.
Конструкционные материалы в процессе деформирования вплоть до разрушения ведут себя по разному. Пластичное поведение характеризуется существенным изменением формы и размеров, при этом к моменту разрушения развиваются значительные деформации, не исчезающие после снятия нагрузки. Такие материалы называют пластичными. При хрупком поведении разрушение наступает при весьма малых деформациях, и материалы с такими свойствами называют хрупкими. Однако одни и те же конструкционные материалы, находящиеся в различных условиях деформирования, ведут себя по разному: при одних условиях проявляют себя как пластичные материалы, при других - как хрупкие. В связи с этим, основные макромеханические характеристики материалов - упругость, пластичность, вязкость и др. правильнее относить не к их свойствам, а к состояниям материала.