Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Пример решения задачи в специальной форме




Симплекс-методом

 

Решить задачу, записанную в виде:

Составим симплексную таблицу:

 
L      
     
   

 

Так как коэффициенты строки целевой функции неотрицательны, то начальное базисное решение не является оптимальным. Значение целевой функции для этого базиса L=0.

Выбираем ведущий столбец – это столбец, соответствующий переменной . Выбираем ведущую строку. Для этого находим . Следовательно, ведущая строка соответствует переменной .

Проводим преобразование симплексной таблицы, вводя переменную в базис и выводя переменную из базиса. Получим таблицу:

 

 
L -2   -2
  -1
   

 

Одна итерация метода завершена. Переходим к новой итерации. Полученная таблица неоптимальная. Базисное решение, соответствующее таблице, имеет вид . Значение целевой функции на этом базисе
L= -2.

Ведущий столбец здесь – столбец, соответствующий переменной . Ведущая строка – строка, соответствующая переменной . После проведения преобразований получим симплексную таблицу:

 

 
L -4/3 -2/3
4/3 2/3 -2/3
5/4 1/3 2/3

 

Еще одна итерация завершена. Переходим к новой итерации.

Строка целевой функции не содержит положительных значений, значит, соответствующее базисное решение

,

является оптимальным и алгоритм завершает работу.

 

Пример решения задачи методом искусственного

Базиса

 

Выделить допустимое базисное решение для задачи ЛП.

 

 

Приведем задачу к канонической форме на минимум с неотрицательными правыми частями.

 

 

Заметим, что переменные и можно использовать для введения в исходный базис, поэтому в первую и третью строку ограничений можно не вводить искусственные переменные.

Во вторую строку ограничений вводим искусственную переменную z, потому что в этой строке нет переменной, которую можно взять базисной, не проводя при этом дополнительных преобразований всей системы ограничений.

 

Полученная вспомогательная задача имеет вид

Приведем задачу к виду (16):

Выпишем соответствующую симплексную таблицу:

 

  B
      -1
    -2  
      -1
       

 

Ведущий столбец рекомендуется выбирать не по максимальному положительному элементу строки целевой функции, а так, чтобы из базиса выводилась искусственная базисная переменная (соответствующая ведущая строка должна быть строкой искусственной переменной). Так, выбрав ведущим столбцом столбец переменной , получим ведущую строку – строку с переменной z (выбирая ведущим столбцом , получили бы ведущую строку и из базиса выводилась бы переменная ).

Итак, искусственная переменная z выйдет из базиса, а переменная введется в базис.

Симплексная таблица преобразуется к виду

 

  B
    -1  
  11/2 1/2 -1/2
5/2 5/4 1/4 -1/4
5/2 3/4 -1/4 1/4

 

Так как значение , то полученный базис является начальным допустимым базисом для исходной задачи ЛП. Чтобы выразить целевую функцию через небазисные переменные , подставим значение базисной переменной в целевую функцию. В результате получим

Тогда исходная задача будет иметь вид специальной формы задачи ЛП:

что и требовалось получить в результате решения вспомогательной задачи.

 





Поделиться с друзьями:


Дата добавления: 2016-10-27; Мы поможем в написании ваших работ!; просмотров: 297 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Своим успехом я обязана тому, что никогда не оправдывалась и не принимала оправданий от других. © Флоренс Найтингейл
==> читать все изречения...

2378 - | 2186 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.011 с.