Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Тема. Розв’язування систем лінійних рівнянь основними методами: методом Гауса, за формулами Крамера, матричним методом




Мета роботи: навчитись розв’язувати системи лінійних рівнянь методами Крамера та Гауса, матричним методом.

Наочне забезпечення та обладнання:

1. Інструкційні картки;

2. Індивідуальні завдання;

3. Обчислювальні засоби.

 

Теоретичні відомості про правило Крамера

Розглянемо систему n лінійних рівнянь з n невідомими:

(1.4)

Теорема. Якщо головний визначник складений із коефі­цієнтів при невідомих системи n лінійних рівнянь з n невідомими (1.4), відмінний від нуля, то така система рівнянь має єдиний розв’язок (сумісна і визначена), який обчислюється за формулами:

,

де — головний визначник системи, який утворюється з коефіцієнтів при невідомих у лівій частині системи (1.4);

— визначник, який утворюється заміною j -го стовпця в головному визначнику на стовпець вільних членів.

 

Задача 1. Розв’язати систему лінійних рівнянь за правилом Крамера:

a)

                                                           
                                                           
                                                           
                                                           
                                                           
                                                           
                                                           
                                                           
                                                           
                                                           
                                                           
                                                           
                                                           
                                                           
                                                           
                                                           
                                                           
                                                           
                                                           
                                                           
                                                           
                                                           

Теоретичні відомості про Метод Гауса розв’язування систем лінійних рівнянь

 

 

Метод Гауса називають ще методом послідовного виключення невідомих. Він полягає в наступному: систему рівнянь приводять до рівносильної їй системі з трикутною матрицею (системи називаються рівносильними, якщо множини їх розв’язків співпадають). Дані дії називаються прямим ходом. З одержаної системи невідомі знаходять за допомогою послідовних підстановок, які називають зворотнім ходом. При виконанні прямого ходу використовують наступні перетворення:

1. множення або ділення коефіцієнтів вільних членів на одне і теж число;

2. додавання або віднімання рівнянь;

3. перестановка рівнянь системи;

4. виключення з системи рівнянь, в яких всі коефіцієнти при невідомих дорівнюють нулю.

Універсальність методу Гауса полягає в тому, що за допомогою нього можна розв’язати систему будь-якого порядку.

Задача 2. Розв’язати систему лінійних рівнянь методом Гауса:

a)

                                                           
                                                           
                                                           
                                                           
                                                           
                                                           
                                                           
                                                           
                                                           
                                                           
                                                           
                                                           
                                                           
                                                           
                                                           
                                                           
                                                           
                                                           
                                                           
                                                           





Поделиться с друзьями:


Дата добавления: 2016-10-06; Мы поможем в написании ваших работ!; просмотров: 386 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Своим успехом я обязана тому, что никогда не оправдывалась и не принимала оправданий от других. © Флоренс Найтингейл
==> читать все изречения...

2351 - | 2153 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.009 с.