Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


ОПОРНО-ДВИГАТЕЛЬНЫЙ АППАРАТ




 

Филогенез двигательной функции лежит в основе прогрессивной эволюции животных. Поэтому уровень их организации в первую очередь зависит от характера двигательной активности, которая определяется особенностями организации опорно-двигательного аппарата, претерпевшего в типе Хордовые большие эволюционные преобразования в связи со сменой сред обитания и изменения форм локомоции. Действительно, водная среда у животных, не имеющих наружного скелета, предполагает однообразные движения за счет изгибов всего тела, в то время как жизнь на суше более способствует их перемещению с помощью конечностей.

Рассмотрим в отдельности эволюцию скелета и мышечной системы.

Скелет

 

У хордовых скелет внутренний. По строению и функциям подразделяется на осевой, скелет конечностей и головы.

Осевой скелет

 

В подтипе Бесчерепные имеется только осевой скелет в виде хорды. Она построена из сильно вакуолизированных клеток, плотно прилегающих друг к другу и покрытых снаружи общими эластической и волокнистой оболочками. Упругость хорде придают тургорное давление ее клеток и прочность оболочек. Хорда закладывается в онтогенезе всех хордовых и выполняет у более высокоорганизованных животных не столько опорную, сколько морфогенетическую функцию, являясь органом, осуществляющим эмбриональную индукцию.

На протяжении всей жизни у позвоночных хорда сохраняется только у круглоротых и некоторых низших рыб. У всех остальных животных она редуцируется. У человека в постэмбриональном периоде сохраняются рудименты хорды в виде nucleus pulposus межпозвоночных дисков. Сохранение избыточного количества хордального материала при нарушении его редукции чревато возможностью развития у человека опухолей — хордом, возникающих на его основе.

У всех позвоночных хорда постепенно вытесняется позвонками, развивающимися из склеротомов сомитов, и функционально заменяется позвоночным столбом. Это один из выраженных примеров гомотопной субституции органов (см. § 13.4). Формирование позвонков в филогенезе начинается с развития их дуг, охватывающих нервную трубку и становящихся местами прикрепления мышц. Начиная с хрящевых рыб обнаруживается охрящевение оболочки хорды и разрастание оснований позвонковых дуг, в результате чего формируются тела позвонков. Срастание верхних позвонковых дуг над нервной трубкой образует остистые отростки и позвоночный канал, в который заключена нервная трубка (рис. 14.6).

 

 

Рис. 14.6. Развитие позвонка. А—ранний этап; Б— последующая стадия:

1 —хорда, 2— оболочка хорды, 3— верхние и нижние позвонковые дуги, 4— остистый отросток, 5— зоны окостенения, 6—рудимент хорды, 7 хрящевое тело позвонка

 

Замещение хорды позвоночным столбом — более мощным органом опоры, имеющим сегментарное строение,— позволяет увеличить общие размеры тела и активизирует двигательную функцию. Дальнейшие прогрессивные изменения позвоночного столба связаны с тканевой субституцией — заменой хрящевой ткани на костную, что обнаруживается у костных рыб, а также с дифференцировкой его на отделы.

У рыб только два отдела позвоночника: туловищный и хвостовой. Это связано с перемещением их в воде за счет изгибов тела.

Земноводные приобретают также шейный и крестцовый отделы, представленные каждый одним позвонком. Первый обеспечивает большую подвижность головы, а второй — опору задним конечностям.

У пресмыкающихся удлиняется шейный отдел позвоночника, первые два позвонка которого подвижно соединены с черепом и обеспечивают большую подвижность головы. Появляется поясничный отдел, еще слабо отграниченный от грудного, а крестец состоит уже из двух позвонков.

Млекопитающие характеризуются стабильным количеством позвонков в шейном отделе, равным 7. В связи с большим значением в движении задних конечностей крестец образован 5—10 позвонками. Поясничный и грудной отделы четко отграничены друг от друга.

У рыб все туловищные позвонки несут ребра, не срастающиеся друг с другом и с грудиной. Они придают телу устойчивую форму и обеспечивают опору мышцам, изгибающим тело в горизонтальной плоскости. Эта функция ребер сохраняется у всех позвоночных, совершающих змеевидные движения,— у хвостатых земноводных и пресмыкающихся, поэтому у них ребра также располагаются на всех позвонках, кроме хвостовых.

У пресмыкающихся часть ребер грудного отдела срастается с грудиной, формируя грудную клетку, а у млекопитающих в состав грудной клетки входит 12—13 пар ребер.

 

 

Рис. 14.7. Аномалии развития осевого скелета. А — рудиментарные шейные ребра (показаны стрелками); Б — несращение остистых отростков позвонков в грудной и поясничной областях. Спинномозговые грыжи

 

Онтогенез осевого скелета человека рекапитулирует основные филогенетические стадии его становления: в периоде нейруляции закладывается хорда, заменяющаяся впоследствии хрящевым, а затем и костным позвоночником. На шейных, грудных и поясничных позвонках развивается по паре ребер, после чего шейные и поясничные ребра редуцируются, а грудные срастаются спереди друг с другом и с грудиной, формируя грудную клетку.

Нарушение онтогенеза осевого скелета у человека может выразиться в таких атавистических пороках развития, как несрастание остистых отростков позвонков, в результате чего формируется spinabifida — дефект позвоночного канала. При этом часто через дефект выпячиваются мозговые оболочки и образуется спинномозговая грыжа (рис. 14.7).

В возрасте 1,5—3 мес. зародыш человека обладает хвостовым отделом позвоночника, состоящим из 8—11 позвонков. Нарушение их редукции в последующем объясняет возможность возникновения такой известной аномалии осевого скелета, как персистирование хвоста.

Нарушение редукции шейных и поясничных ребер лежит в основе их сохранения в постнатальном онтогенезе.

 

Скелет головы

 

Продолжением осевого скелета спереди является осевой, или мозговой, череп, служащий для защиты головного мозга и органов чувств. Рядом с ним развивается висцеральный, или лицевой череп, образующий опору передней части пищеварительной трубки. Обе части черепа развиваются по-разному и из разных зачатков. На ранних этапах эволюции и онтогенеза они не связаны между собой, но позже эта связь возникает.

 

 

Рис. 14.8. Череп человека с методическим швом (указан стрелкой)

 

В задней части осевого черепа в процессе развития обнаруживаются следы сегментации, поэтому считают, что он представляет собой результат слияния друг с другом закладок передних позвонков. В состав мозгового черепа включаются также закладки хрящевых капсул мезенхимального происхождения, окружающие органы слуха, обоняния и зрения. Кроме того, часть мозгового черепа (лежащая кпереди от турецкого седла), не имеющая сегментации, развивается, по-видимому, как новообразование в связи с увеличением размеров переднего мозга.

Филогенетически мозговой череп прошел три стадии развития: перепончатую, хрящевую и костную.

У круглоротых он практически весь перепончатый и не имеет передней, несегментированной, части.

Череп хрящевых рыб почти полностью хрящевой, причем включает в себя как заднюю, первично сегментированную, часть, так и переднюю.

У костных рыб и остальных позвоночных осевой череп становится костным за счет процессов окостенения хряща в области его основания (основная, клиновидная, решетчатая кости) и за счет возникновения покровных костей в верхней его части (теменные, лобные, носовые кости). Кости осевого черепа в процессе прогрессивной эволюции претерпевают олигомеризацию. Появление большого количества зон окостенения и последующее слияние их вместе при формировании таких костей, как лобная, височная и др., свидетельствуют об этом. Широко известны у человека такие аномалии мозгового черепа, как наличие межтеменных, а также двух лобных костей с метопическим швом между ними (рис. 14.8). Никакими патологическими явлениями они не сопровождаются и обнаруживаются поэтому обычно случайно после смерти.

Висцеральный череп впервые появляется также у низших позвоночных. Он формируется из мезенхимы эктодермального происхождения, которая группируется в виде сгущений, имеющих форму дужек, в промежутках между жаберными щелями глотки. Первые две дужки получают особенно сильное развитие и дают начало челюстной и подъязычной дугам взрослых животных. Следующие дуги в числе 4—5 пар выполняют опорную функцию для жабр и называются жаберными.

У хрящевых рыб впереди челюстной дуги располагаются обычно еще 1—2 пары предчелюстных дуг, имеющих рудиментарный характер. Это свидетельствует о том, что у предков позвоночных имелось большее количество висцеральных дуг, чем б или 7, а их дифференцировка происходила на фоне олигомеризации.

Челюстная дуга состоит из двух хрящей. Верхний называют нёбно-квадратным, он выполняет функцию первичной верхней челюсти. Нижний, или меккелев, хрящ — первичная нижняя челюсть. На вентральной стороне глотки меккелевы хрящи соединены друг с другом таким образом, что челюстная дуга кольцом охватывает ротовую полость. Вторая висцеральная дуга с каждой стороны состоит из гиомандибулярного хряща, сращенного с основанием мозгового черепа, и гиоида, соединенного с меккелевым хрящом. Таким образом, у хрящевых рыб обе первичные челюсти соединены с осевым черепом через вторую висцеральную дугу, в которой гиомандибулярный хрящ выполняет роль подвеска к мозговому черепу. Такой тип соединения челюстей и осевого черепа называют гиостильным (рис. 14.9).

У костных рыб начинается замещение первичных челюстей вторичными, состоящими из накладных костей — челюстной и предчелюстной сверху и зубной внизу. Нёбно-квадратный и меккелев хрящи при этом уменьшаются в размерах и смещаются кзади. Гиомандибулярный хрящ продолжает выполнять функции подвеска, поэтому череп остается гиостильным.

Земноводные в связи с переходом к наземному существованию претерпели значительные изменения висцерального черепа. Жаберные дуги частично редуцируются, а частично, меняя функции, входят в состав хрящевого аппарата гортани. Челюстная дуга своим верхним элементом — нёбно-квадратным хрящом — срастается полностью с основанием мозгового черепа, и череп становится, таким образом, аутостильным. Гиомандибулярный хрящ, сильно редуцированный и освободившийся от функции подвеска, располагаясь в области первой жаберной щели внутри слуховой капсулы, взял на себя функцию слуховой косточки — столбика,— передающей звуковые колебания от наружного к внутреннему уху.

Висцеральный череп пресмыкающихся также аутостилен. Для челюстного аппарата характерна более высокая степень окостенения, чем у земноводных. Часть хрящевого материала жаберных дуг входит в состав не только гортани, но и трахеи.

Нижняя челюсть млекопитающих сочленяется с височной костью сложным суставом, позволяющим не только захватывать пищу, но и совершать сложные жевательные движения.

Одна слуховая косточка — столбик,— характерная для земноводных и пресмыкающихся, уменьшаясь в размерах, превращается в стремечко, а рудименты нёбно-квадратного и меккелева хрящей, полностью выходящие из состава челюстного аппарата, преобразуются соответственно в наковаленку и молоточек. Таким образом, создается единая функциональная цепь из трех слуховых косточек в среднем ухе, характерная только для млекопитающих (рис. 14.9).

 

Рис. 14.9. Эволюция двух первых висцеральных жаберных дуг позвоночных.

А— хрящевая рыба; Б— земноводное; В— пресмыкающееся; Г— млекопитающее:

1 —нёбно-квадратный хрящ, 2—меккелев хрящ, 3— гиомандибулярный хрящ, 4—гиоид, 5— столбик, 6— накладные кости вторичных челюстей, 7—наковаленка, 8— стремечко, 9— молоточек; гомологичные образования обозначены соответствующей штриховкой

Рекапитуляция основных этапов филогенеза висцерального черепа происходит и в онтогенезе человека. Нарушение дифференцировки элементов челюстной жаберной дуги в слуховые косточки является механизмом формирования такого порока развития среднего уха, как расположение в барабанной полости только одной слуховой косточки — столбика, что соответствует строению звукопередающего аппарата земноводных и пресмыкающихся.

Скелет конечностей

 

У хордовых выделяются непарные и парные конечности. Непарные (спинные, хвостовой' и анальный плавники) являются основными органами передвижения у бесчерепных, рыб и в меньшей степени у хвостатых амфибий. У рыб возникают также парные конечности — грудные и брюшные плавники, на базе которых впоследствии развиваются парные конечности наземных четвероногих животных.

Подробнее рассмотрим происхождение и эволюцию парных конечностей.

У личинок рыб, а также у современных бесчерепных вдоль тела с обеих сторон тянутся боковые кожные складки, называемые метаплевральными (рис. 14.10). Они не имеют ни скелета, ни собственной мускулатуры, выполняя пассивную роль — стабилизацию положения тела и увеличение площади брюшной поверхности, облегчающие перемещение в водной среде. Вероятно, у предков рыб, переходящих к более активному образу жизни, в этих складках появились мышечные элементы и хрящевые лучи, связанные с сомитами по происхождению и поэтому расположенные метамерно. Такие складки, приобретя подвижность, могут выполнять роль рулей глубины, однако для изменения положения тела в пространстве большее значение имеют их передние и задние отделы, как наиболее удаленные от центра тяжести. Поэтому эволюция шла по пути интенсификации функций крайних отделов и ослабления функций центральных частей.

 

 

Рис. 14.10. Формирование передних и задних конечностей из метаплевральных складок: IIII —гипотетические этапы эволюции

В результате из передних отделов складок развились грудные, а из задних — брюшные плавники (рис. 14.10). Не исключено, что формированию только двух пар конечностей на боковых сторонах тела предшествовал распад сплошных складок на ряд парных плавников, большее значение из которых также имели передние и задние. Об этом свидетельствует существование ископаемых остатков древнейших низкоорганизованных рыб с многочисленными плавниками (рис. 14.11). За счет слияния оснований хрящевых лучей возникли плечевой и тазовый пояса. Остальные их участки дифференцировались в скелет свободных конечностей.

 

 

Рис. 14.11. Древняя акулообразная рыба с многочисленными парными конечностями

 

У большинства рыб в скелете парных плавников выделяют проксимальный отдел, состоящий из небольшого числа хрящевых или костных пластинок, и дистальный, в состав которого входит большое количество расположенных радиально сегментированных лучей. С поясами конечностей плавники соединены малоподвижно. Они не могут служить опорой телу при передвижении по дну или суше. У кистеперых рыб скелет парных конечностей имеет иное строение. Общее количество их костных элементов уменьшено, и они имеют более крупные размеры. Проксимальный отдел состоит только из одного крупного костного элемента, соответствующего плечевой или бедренной костям передних или задних конечностей. Далее следуют две более мелкие косточки, гомологичные локтевой и лучевой или большой и малой берцовым костям. На них опираются 7—12 радиально расположенных лучей. В соединении с поясами конечностей у такого плавника участвуют только гомологи плечевой или бедренной костей, поэтому плавники кистеперых рыб оказываются активно подвижными (рис. 14.12, А, Б) и могут использоваться не только для изменения направления движения в воде, но и для перемещения по твердому субстрату.

Жизнь этих рыб в мелких пересыхающих водоемах в девонском периоде способствовала отбору форм с более развитыми и подвижными конечностями. Наличие у них добавочных органов дыхания (см. разд. 14.3.4) стало второй предпосылкой выхода на сушу и возникновения других адаптации к наземному существованию, результатом чего явилось происхождение земноводных и всей группы Tetrapoda. Первые их представители — стегоцефалы — обладали семи- и пятипалыми конечностями, сохраняющими сходство с плавниками кистеперых рыб (рис. 14.12, B)

 

 

Рис. 14.12. Скелет конечности кистеперой рыбы (А), его основание (Б) и скелет передней лапы стегоцефала (В): I— плечевая кость, 2—локтевая кость, 3— лучевая кость

 

В скелете запястья сохранено правильное радиальное расположение костных элементов в 3—4 ряда, в пястье располагается 7—5 костей, а далее также радиально лежат фаланги 7—5 пальцев.

У современных земноводных количество пальцев в конечностях равно пяти или происходит их олигомеризация до четырех.

Дальнейшее прогрессивное преобразование конечностей выражается в увеличении степени подвижности соединений костей, в уменьшении количества костей в запястье сначала до трех рядов у амфибий и затем до двух — у пресмыкающихся и млекопитающих. Параллельно уменьшается также и количество фаланг пальцев. Характерно также удлинение проксимальных отделов конечности и укорочение дистальных.

Расположение конечностей в ходе эволюции также меняется. Если у рыб грудные плавники находятся на уровне первого позвонка и обращены в стороны, то у наземных позвоночных в результате усложнения ориентации в пространстве появляется шея и возникает подвижность головы, а у пресмыкающихся и особенно у млекопитающих в связи с приподнятием тела над землей передние конечности перемещаются кзади и ориентируются не горизонтально, а вертикально. То же касается и задних конечностей.

Многообразие условий обитания, предоставляемых наземным образом жизни, обеспечивает многообразие форм передвижения: прыжки, бег, ползание, полет, рытье, лазание по скалам и деревьям, а при возвращении в водную среду — и плавание. Поэтому у наземных позвоночных можно встретить как почти неограниченное многообразие конечностей, так и их полную вторичную редукцию, причем многие сходные адаптации конечностей в разнообразных средах многократно возникали конвергентно (рис. 14.13). Однако в процессе онтогенеза у большинства наземных позвоночных проявляются общие черты в развитии конечностей: закладка их зачатков в виде малодифференцированных складок, формирование в кисти и стопе вначале шести или семи зачатков пальцев, крайние из которых вскоре редуцируются и в дальнейшем развивается только пять (рис. 14.14).

 

Рис. 14.13. Скелет передней конечности наземных позвоночных. А —лягушка- Б —саламандра; В —крокодил; Г —летучая мышь; Д —человек: 1 —плечевая кость, 2—лучевая кость, 3 —кости запястья, 4 —пясти, 5 —фаланги пальцев, 6 —локтевая кость

 

Рис. 14.14. Строение развивающейся конечности позвоночного: рр — prepollex, pin — postminimus — дополнительные рудиментарные I и VII пальцы

 

Интересно, что в эмбриогенезе высших позвоночных рекапитулирует не только строение конечностей предков, но и процесс их гетеротопии. Так, у человека верхние конечности закладываются на уровне 3—4-го шейных позвонков, а нижние — на уровне поясничных позвонков. В это же время конечности получают иннервацию из соответствующих отделов спинного мозга. Гетеротопия конечностей сопровождается формированием шейного, поясничного и крестцового нервных сплетений, нервы которых связаны с одной стороны с теми сегментами спинного мозга, из которых они вырастали в момент формирования конечностей, а с другой — с конечностями, переместившимися на новое место (рис. 14.15; см. также разд. 14.2.2.2).

В онтогенезе человека возможны многочисленные нарушения, ведущие к формированию врожденных пороков развития конечностей атавистического плана. Так, полидактилия, или увеличение количества пальцев, наследующаяся как аутосомно-доминантный признак, является результатом развития закладок дополнительных пальцев, характерных в норме для далеких предковых форм. Известен феномен полифалангии, характеризующийся увеличением числа фаланг обычно большого пальца кисти. В основе его возникновения — развитие трех фаланг в первом пальце, как это в норме наблюдается у пресмыкающихся и земноводных с недифференцированными пальцами конечностей. Двусторонняя полифалангия наследуется аутосомно-доминантно.

Серьезным пороком развития является нарушение гетеротопии пояса верхних конечностей из шейной области на уровень 1—2-го грудных позвонков. Эту аномалию называют болезнью Шпренгеля или врожденным высоким стоянием лопатки (рис. 14.16). Она выражается в том, что плечевой пояс с одной либо с двух сторон находится выше нормального положения на несколько сантиметров. В связи с тем что такое нарушение часто сопровождается аномалиями рёбер, грудного отдела позвоночника и деформацией лопаток, следует думать, что механизмы его возникновения — не только нарушение перемещения органов, но и обусловленное этим нарушение морфогенетических корреляций (см. § 13.4).

 

 

Сравнительно-анатомический обзор эволюции скелета хордовых свидетельствует о том, что скелет человека полностью гомологичен опорному аппарату предковых и родственных форм. Поэтому многие пороки его развития у человека можно объяснить родством млекопитающих с пресмыкающимися, земноводными и рыбами. Однако в процессе антропогенеза появились такие особенности скелета, которые характерны лишь для человека и связаны с его прямохождением и трудовой деятельностью. К ним относят: 1) изменения стопы переставшей выполнять хватательную функцию, выражающиеся в потере способности к противопоставлению большого пальца и появлению ее сводов, служащих для амортизации при ходьбе; 2) изменения позвоночного столба — его S-образный изгиб, обеспечивающий пластичность движений в вертикальном положении; 3) изменения черепа — резкое уменьшение его лицевой части и увеличение мозговой, смещение большого затылочного отверстия кпереди, увеличение сосцевидного отростка и сглаживание затылочного рельефа, к которому прикрепляются мышцы шеи и выйная связка; 4) специализация верхних (передних) конечностей как органа труда; 5) появление подбородочного выступа в связи с развитием членораздельной речи.

 

Рис. 14.15. Формирование передних конечностей, их гетеротопия и иннервация в онтогенезе человека. А —врастание шейных миотомов в формирующуюся переднею конечность зародыша; Б —развитие кожной иннервации руки; В — расположение шейного и плечевого сплетений, участвующих в иннервации руки:

1 —шейные миотомы, 2— грудные миотомы, 3 —поясничные миотомы; буквами С, Т, L обозначены шейные, грудные и поясничные сегменты

 

 

Рис. 14.16. Болезнь Шпренгеля (пояснение см. в тексте)

Несмотря на то что становление анатомо-морфологических особенностей скелета у человека, по-видимому, завершено, адаптации к прямохождению у него имеют, как и все адаптации вообще, относительный характер. Так, при большой физической нагрузке возможно смещение позвонков или межпозвонковых дисков. Человек, перейдя к прямохождению, утратил способность к быстрому бегу и передвигается значительно медленнее большинства четвероногих животных.

Естественно, что в ходе внутриутробного развития черты скелета, характеризующие человека как уникальный биологический вид, формируются на конечных его этапах либо даже, как, например, S-образная форма позвоночника, в раннем постнатальном периоде развития. Они являются фактически анаболиями, возникшими в ходе филогенеза приматов. Поэтому атавистические аномалии скелета, связанные с задержками развития признаков, характерных только для человека, встречаются наиболее часто. Они практически не снижают жизнеспособность, но дети, обладающие ими, нуждаются в ортопедической коррекции, гимнастике и массаже. К таким аномалиям относят легкие формы врожденного плоскостопия, косолапости, узкую грудную клетку, отсутствие подбородочного выступа и некоторые другие.

Мышечная система

 

У представителей типа Хордовые мускулатура подразделяется по характеру развития и иннервации на соматическую и висцеральную.

Соматическая мускулатура развивается из миотомов и иннервируется нервами, волокна которых выходят из спинного мозга в составе брюшных корешков спинномозговых нервов. Висцеральная мускулатура развивается из других участков мезодермы и иннервируется нервами вегетативной нервной системы. Вся соматическая мускулатура поперечно-полосата, а висцеральная может быть как поперечно-полосатой, так и гладкой (рис. 14.17).

 

Рис. 14.17. Соматическая и висцеральная мускулатура позвоночных:

1 —соматическая мускулатура, развивающаяся из миотомов, 2— висцеральная мускулатура жаберной области

Висцеральная мускулатура

 

Наиболее существенные изменения претерпела висцеральная мускулатура, связанная с висцеральными дугами передней части пищеварительной трубки. У низших позвоночных большая часть этой мускулатуры представлена общим сжимателем висцерального аппарата — m. constrictor superficialis, покрывающим всю область жаберных дуг со всех сторон. В области челюстной дуги эта мышца иннервируется тройничным нервом (V), в области подъязычной дуги — лицевым (VII), в области первой жаберной дуги — языкоглоточным (IX), наконец, ее часть, лежащая каудальнее,— блуждающим нервом (X). В связи с этим все производные соответствующих висцеральных дуг и мышц, связанных с ними, иннервируются впоследствии у всех позвоночных перечисленными нервами.

В передней части сжимателя обособляется крупная мускулатурная масса, обслуживающая челюстной аппарат. Позади висцерального аппарата дифференцируется трапециевидная мышца m. trapezius, отдельными пучками прикрепляющаяся к последним жаберным щелям и переднему краю спинного отдела плечевого пояса. Часть поверхностного сжимателя в области подъязычной дуги у пресмыкающихся разрастается, охватывает шею снизу и с боков и образует сжиматель шеи m. sphincter colli. У млекопитающих эта мышца делится на два слоя: глубокий и поверхностный. Глубокий сохраняет прежнее название, а поверхностный называется platysma myoides и располагается подкожно. Эти две мышцы разрастаются на всю область головы и дают начало сложной системе лицевой подкожной мускулатуры, которую у приматов и человека называют мимической. Поэтому вся мимическая мускулатура иннервируется так же, как и мышца, из которой она происходит,— лицевым нервом.

Мышцы собственно жаберного аппарата с утратой жаберного дыхания редуцируются, но отдельные их элементы сохраняются в виде мышц подъязычного аппарата, глотки и гортани. Трапециевидная мышца полностью теряет связь с жаберным аппаратом и становится исключительно мышцей плечевого пояса. Часть ее у млекопитающих отходит от сосцевидного отростка черепа и приклепляется к ключице и грудине, обособляется — грудино-ключично-сосцевидная мышца т. sternocleidomastoideus. Иннервирующая эту мышцу задняя часть блуждающего нерва становится самостоятельным черепно-мозговым нервом XI пары, добавочным — п. accessorius.

Основные этапы филогенеза висцеральной мускулатуры жаберной области рекапитулируют в эмбриогенезе млекопитающих и человека. Знание этих рекапитуляции позволяет объяснить сложность иннервации мышц лица и шеи, объединенных с ними общностью происхождения.

 

 

Соматическая мускулатура

 

Мускулатура головы. У всех позвоночных животных в процессе эмбриогенеза нижние концы миотомов образуют выросты в вентральном направлений, охватывающие полость тела снаружи и срастающиеся по центральной линии на брюшной стороне. Таким образом, закладки соматической мускулатуры становятся сегментарными не только на дорсальной стороне в связи с сегментацией сомитов, но и на вентральной. В миотомах и в их вентральных отростках идет образование продольных мускульных волокон.

Миотомы, лежащие на головном конце тела, распадаются на мезенхиму и образуют зачатки отдельных мышц. Из первого миотома головы формируются верхняя внутренняя и нижняя прямые и нижняя косая мышцы глаза, иннервируемые глазодвигательнъш нервом п. oculomotorius (III пара). Из второго миотома — верхняя косая мышца, иннервируемая блоковым нервом п. trochlearis (IV пара); а из третьего — наружная прямая мышца, получающая иннервацию от отводящего нерва п. abducens (VI пара).

Задние миотомы головы, образующие мощные вентральные отростки, распространяющиеся вокруг висцеральной мускулатуры глоточной области, образуют подъязычную мускулатуру, которая у рыб слабо дифференцирована, а начиная с земноводных распадается на m. sternohyoideus, т. omohyoideus и т. geniohyoideus. У наземных позвоночных за счет последней мышцы формируется собственная мускулатура языка — m. genioglossus и m. hyoglossus. Вся подъязычная мускулатура иннервируется подъязычным нервом п. hypoglossus, который у амниот становится типичным черепно-мозговым нервом.

Мускулатура туловища и конечностей. У бесчерепных, а также у рыб вся мускулатура туловища состоит из ряда мышечных сегментов, или миомеров, правой и левой сторон, которые вместе образуют так называемые боковые мышцы. Каждый миомер развивается из миотома одного сомита и иннервируется первоначально двигательной ветвью одного спинномозгового нерва. Миомеры отделены друг от друга миосептами — соединительнотканными перегородками. Такой же перегородкой, идущей продольно, бокойая мышца разделена на спинную и брюшную мышцы.

Уже у рыб направление пучков мышечных волокон в миомерах начинает изменяться на разной глубине мышечного слоя. Эта дифференцировка значительно более выражена у наземных позвоночных и приводит у них к постепенному обособлению различных слоев брюшной и спинной мускулатуры. В результате этого возникают сложные группы мышц, от первоначальной четкой метамерии которых остаются только следы в виде глубоких мышц спины и шеи, связывающих друг с другом соседние позвонки. Значение спинной мускулатуры наземных позвоночных снижается в связи с передвижением большинства из них с помощью конечностей, а брюшные мышцы претерпевают смену функций: первоначально принимающие участие в перемещениях тела, они у пресмыкающихся и млекопитающих служат для изменения объема грудной и брюшной полостей в процессе дыхания.

Мускулатура парных плавников рыб закладывается в виде ряда мускульных почек, вырастающих от вентральных концов миотомов. Каждая из этих почек подразделяется на два мышечных зачатка, врастающих в основание закладки плавника с его спинной и брюшной сторон. Первые функционально становятся мышцами, отводящими плавник, вторые — приводящими. У наземных позвоночных из мышечного зачатка, гомологичного отводящей мышце плавника, развивается группа разгибателей пятипалой конечности, а из зачатка ее антагонистов — группа сгибателей. В пределах каждой группы идет дифференцировка на поверхностные и глубокие мышечные пучки, становящиеся самостоятельными мышцами. В целом мышцы наземных позвоночных, гомологичные мышцам плавников рыб, образуют первичную мускулатуру конечностей. Она иннервируется нервами плечевого и пояснично-крестцового сплетений, образованных в процессе перемещения поясов конечностей в ходе эмбриогенеза (см. разд. 14.2.1).

При дальнейшей дифференцировке миотомов грудной клетки развивается группа мышц, приводящая в движение сам плечевой пояс, или вторичная мускулатура. К ней относят широчайшую мышцу спины, большую и малую грудные, а также зубчатую мышцы. Они иннервируются непосредственно спинномозговыми нервами сегментов спинного мозга, расположенных каудальнее тех его участков, которые осуществляют иннервацию первичной мускулатуры. Задняя пара конечностей не имеет вторичной мускулатуры в связи с тем, что гетеротопия тазового пояса по отношению к позвоночнику в процессе эволюции менее выражена.

Изменение среды обитания и характера движений позвоночных привело к усилению и обособлению большого числа мышц, обслуживающих конечности, и к относительной редукции собственно мышц туловища. Такие мышцы, как грудные, широчайшая мышца спины и трапециевидная, в значительной мере покрывают туловищную мускулатуру и даже частично вытесняют ее функционально.

ПИЩЕВАРИТЕЛЬНАЯ

И ДЫХАТЕЛЬНАЯ СИСТЕМЫ

 

Уникальной особенностью организации хордовых является филогенетическая, эмбриональная, а также функциональная связь пищеварительной и дыхательной систем. Действительно, только у хордовых дыхательная система развивается на базе пищеварительной и на первых этапах эволюции функционирует совместно с ней. Так, у ланцетника, сохранившего в значительной степени черты организации предковых форм, специализированных органов дыхания нет, а дыхательную функцию выполняет глотка — передняя часть пищеварительной трубки, пронизанная сквозными отверстиями — жаберными щелями, главной функцией которых является фильтрация воды. Челюстного аппарата у ланцетника нет, и активно питаться он не может. Поэтому источником его питания является взвесь органических частиц в воде, которые задерживаются жаберными перегородками, прилипая к слизи, обильно выделяемой железистыми клетками глотки. Постоянный ток свежей воды через глотку способствует газообмену в кровеносных сосудах, расположенных в жаберных перегородках. На капилляры эти сосуды не распадаются, что свидетельствует о второстепенности дыхательной функции глотки.

У более высокоорганизованных хордовых начиная с рыб пищеварительная и дыхательная функции осуществляются специализированными системами, объединенными анатомически общей полостью рта и глотки, а также развитием из общего энтодермального зачатка.

 

 

Рис. 14.18. Кишечная трубка позвоночных (А) и ее дифференцировка в эмбриогенезе человека (Б):

а— жаберные щели в глотке; 1 —ротовая полость, 2— 1—5-й глоточные карманы, 3— глотка, 4— пищевод, 5— желудок, 6— двенадцатиперстная кишка, 7—дорсальная поджелудочная железа, 8— вентральная поджелудочная железа, 9— тонкая кишка. 10 —клоака, 11 мочевой пузырь, 12— желточный мешок, 13— желчный пузырь, 14— печень, 15— легкие, 16 —закладка щитовидной железы

 

Тесная связь обеих систем в филогенезе определяется в первую очередь их топографическими и динамическими координациями, а развитие в онтогенезе — морфогенетическими и эргонтическими корреляциями. Пищеварительная и дыхательная системы хордовых в эмбриогенезе закладываются вначале в виде прямой трубки, подразделяющейся на три участка. Переднюю ее часть, начинающуюся ротовым отверстием и заканчивающуюся переходом в глотку, называют stomodeum. Слизистая оболочка, выстилающая этот участок, эктодермального происхождения и в развитии связана с кожным эпидермисом и его производными (см. § 14.1). Средняя часть кишки начинается глоткой и заканчивается в том месте, где ее энтодермальная слизистая оболочка контактирует с эктодермальной слизистой оболочкой задней кишки, или proctodeum (рис. 14.18).

Ротовая полость

 

Рассмотрим вначале эволюцию ротовой полости и ее производных. У бесчерепных ротовая полость окружена предротовой воронкой со щупальцами и частично выстлана мерцательным эпителием, который вместе с таким же эпителием глотки создает постоянный ток воды в кишечную трубку, несущую пищевые частицы и кислород. Ротовое отверстие позвоночных окружено кожными складками — губами, которые становятся подвижными только у сумчатых и плацентарных млекопитающих в связи со вскармливанием детенышей молоком.

Крыша ротовой полости образована у рыб и земноводных основанием мозгового черепа, которое является первичным твердым нёбом. Хоаны земноводных открываются в их ротовую полость сразу позади альвеолярной дуги верхней челюсти. У пресмыкающихся объем ротовой полости увеличивается, и на верхнечелюстных и нёбных костях появляются горизонтальные складки, частично разделяющие ее на верхний, дыхательный, отдел и вторичную ротовую полость. Хоаны при этом несколько смещаются кзади. У млекопитающих наблюдается срастание этих складок по средней линии таким образом, что возникает сплошное вторичное твердое нёбо, полностью отделяющее друг от друга ротовую полость и полость носа. Хоаны при этом открываются в носоглотку. Этим достигается независимость функций органов ротовой полости от процесса дыхания (рис. 14.19, А— В).

До 7-й недели эмбрионального развития человека дифференцировка области stomodeum отсутствует. К концу 8-й недели происходит формирование вторичного твердого нёба за счет срастания горизонтальных костных складок. При нарушении адгезии клеток обеих складок возможно незаращение твердого нёба — порок развития, известный под названием волчья пасть (рис. 14.19, Г). Эта аномалия имеет атавистическую природу. Доказаны генетические механизмы ее возникновения. Она сопровождает ряд хромосомных синдромов, а также наследуется изолированно, причем с разной частотой у населения разных популяций. Так, в Японии частота «волчьей пасти» равна 2,1, а в Нигерии — 0,4 случая на 1000 рождений.

 

Зубы позвоночных связаны по происхождению с плакоидной чешуей хрящевых рыб (см. § 14.1). У них наблюдается непрерывный переход от типичных чешуи к зубам в ротовой полости (рис. 14.20). Зубы первоначально расположены во много рядов и покрывают всю слизистую оболочку ротовой полости, располагаясь у многих рыб даже на языке. У ряда земноводных зубы также расположены не только на альвеолярной дуге, но и на других костях, например на сошнике. У пресмыкающихся обнаруживается только один ряд зубов, причем, так же как у земноводных и рыб, дифференцировка их отсутствует. Такую зубную систему, в которой все зубы одинаковы, называют гомодонтной. У животных перечисленных классов зубы, как и плакоидные чешуи, могут многократно выпадать, сменяясь новыми их поколениями. Многократную смену зубов называют полифиодонтизмом.

 

 

Рис. 14.20. Переход от плакоидной чешуи к зубам по краю ротового отверстия акулы: 1 — плакоидная чешуя, 2— закладка новых зубов, 3— эмаль, 4— дентин, 5— зубы

Зубы млекопитающих дифференцированы на резцы, клыки и коренные. Они выполняют различные функции. Такую зубную систему называют гетеродонтной. Если резцы, и в особенности клыки, млекопитающих еще весьма сходны с коническими зубами предков, то наибольшим эволюционным преобразованиям подверглись коренные зубы. Впервые они вознили у зверозубых ящеров начала мезозойской эры за счет расширения оснований зубов и появления дополнительных бугорков, а затем и увеличения жевательных поверхностей при их сглаживании. Общее количество зубов у млекопитающих уменьшается и достигает у высших приматов 32. Зубы располагаются только на альвеолярных дугах челюстей, в ячейках. Основание зуба сужается, образуя корень.

Зубы человека по сравнению с другими приматами уменьшены в размерах, особенно клыки. Моляры имеют четырехбугорчатое строение. Зубная дуга округлой формы. В связи с дифференцировкой зубов увеличилась продолжительность их функционирования, в результате чего в онтогенезе сменяются только два их поколения: молочные и коренные. Это явление называют дифиодонтизмом.

У человека возможны атавистические аномалии зубной системы, связанные с нарушениями как дифференцировки зубов, так и с их количеством. Редкой аномалией является гомодонтная зубная система, в которой все зубы имеют коническую форму. Более частой патологией является трехбугорчатое строение коренных зубов. Нередко встречается прорезывание сверхкомплектных зубов в ряду или за его пределами, иногда даже на твердом нёбе (рис. 14. 21). Это свидетельствует о том, что у человека возможно образование большего количества зубных зачатков, чем 32, как это в норме встречается у низших млекопитающих и представителей более отдаленных классов позвоночных. Свидетельством тенденции к дальнейшему уменьшению количества зубов у человека является то, что нередко последние коренные зубы, так называемые «зубы мудрости», вообще не прорезываются, а если и прорезываются, то это происходит поздно — до 25 лет. Кроме того, эти зубы имеют явно рудиментарный характер, уменьшены в размерах и часто слабо дифференцированы.

 

 

Рис. 14.21. Сверхкомплектные зубы, прорезавшиеся у человека (указаны стрелками)

На дне ротовой полости позвоночных располагается непарный выступ — язык, который у рыб представляет собой складку слизистой оболочки, лишенную мышц. Его движения осуществляются вместе с челюстями и подъязычной костью. У наземных позвоночных в языке располагаются мышцы, и они определяют его собственную подвижность. У пресмыкающихся и млекопитающих язык закладывается из трех зачатков: одного непарного и двух парных, лежащих кпереди от первого. Парные зачатки позже срастаются и дают начало телу языка. У большинства рептилий это срастание неполное, и язык раздвоен на конце. Весьма редким пороком развития языка у человека является раздвоенность его конца как результат несращения парных зачатков в эмбриогенезе.

Слюнные железы у рыб, заглатывающих пищу вместе с водой, отсутствуют и появляются только при переходе на сушу. Земноводные, обитающие на земле, имеют несколько слюнных желез, выделяющих только слизь. Слюна пресмыкающихся содержит уже и пищеварительные ферменты, а у некоторых змей—и токсины (см. §23.1). У млекопитающих слюнные железы многочисленны: это и мелкие — зубные, щечные, нёбные, язычные, гомологичные железам земноводных и пресмыкающихся, и крупные — подъязычные, подчелюстные и околоушные. Подъязычная и подчелюстная железы — результат дифференцировки подъязычной железы пресмыкающихся, околоушная — новое приобретение млекопитающих.

Глотка

 

Глотка — орган, выполняющий у всех хордовых две функции: дыхательную и пищеварительную. У ланцетника она пронизана большим количеством жаберных щелей (более 150 пар). У рыб жаберные щели в количестве 5—7 закладываются как слепые парные выросты глотки — жаберные мешки. Навстречу им выпячиваются кожные покровы — жаберные карманы. В месте их соприкосновения происходит прорыв тканей эктодермы кожи и энтодермы глотки и возникают сквозные жаберные щели.

У личинок земноводных в глотке образуется четыре пары жаберных щелей (рис. 14.22), а у пресмыкающихся прорыв их происходит только в эмбриональном развитии; вскоре после этого они зарастают. У млекопитающих в эмбриогенезе начинается закладка глоточных мешков и жаберных карманов, которые в норме никогда не прорываются и не образуют жаберных щелей (рис. 14.23).

При нарушении эмбриогенеза во время закладки зачатков жаберных щелей они могут прорываться и даже сохраняться в постэмбриональном периоде у млекопитающих и человека. Эту аномалию называют латеральными свищами шеи. Они открываются на коже боковой поверхности шеи, а другим концом впадают в глотку. Чаще встречается феномен под названием латеральные кисты шеи. Эта аномалия связана с сохранением в постнатальном развитии эмбрионального материала глоточных жаберных мешков или эктодермальных жаберных карманов. Участки этих образований могут заполняться жидкостью, увеличиваться в размерах и склонны к малигнизации. Необходимы своевременная диагностика этих образований и их хирургическое удаление.

Первая жаберная щель у всех наземных позвоночных начиная с земноводных в процессе формирования превращается в евстахиеву трубу, барабанную полость и наружный слуховой проход. Располагаясь топографически в зоне редукции первичных челюстей и подъязычной висцеральной дуги, преобразующихся в слуховые косточки, она меняет свои функции, включаясь в систему слухового анализатора (см. разд. 14.2.1).

 

 

Рис. 14.22. Закладка жаберных щелей у позвоночных. А— фронтальный срез личинки тритона; Б— срез через глотку зародыша мыши (головной конец зародыша сильно изогнут, поэтому на фотографии видны два среза одной нервной трубки):

1—5— жаберные карманы и жаберные щели, 6— зачаток легкого, 7—полость глотки, 8— нервная трубка

Средняя и задняя кишка

 

Кишечная трубка претерпевает в ходе филогенеза следующие прогрессивные преобразования: увеличение общей длины, дифференцировку на отделы и образование крупных многоклеточных желез.

Если длина этого отдела пищеварительной трубки ланцетника составляет примерно 1/3 длины тела, то у млекопитающих возможно превышение ее длины по отношению к телу в 10 раз и более. Этим достигается удлинение времени контакта пищевых частиц с ферментами пищеварения и увеличение всасывающей поверхности. На органном уровне это сопровождается появлением складчатости слизистой оболочки кишки, возникновением ворсинок и крипт. Кишечник ланцетника абсолютно не дифференцирован. В средней его части расположен печеночный вырост — простое слепое выпячивание брюшной стенки кишки, выстланное железистыми клетками. Функционально этот вырост представляет собой зачаточную печень. Он является единственной многоклеточной железой пищеварительной системы ланцетника.

 

 

Рис. 14.23. Развитие области глотки и ее аномалии у человека.

А— зародыш в возрасте 5 недель; Б— тот же зародыш (срез через область глотки по пунктирной линии, изображенной на рис. А); В— схема латеральных свищей шеи; Г— проекции наиболее часто встречающихся латеральных шейных свищей:

IIV —жаберные дуги; 1 —кожа, 2— сонная артерия, 3— глотка, 4— нёбные миндалины, 5— подъязычная кость, 6— гортань, 7—сквозной шейный свищ, 8—10— несквозные свищи

У рыб за глоткой следует короткий пищевод, затем желудок, слабо от него отграниченный. В кишечнике выделяются тонкий и толстый отделы, последний открывается анусом во внешнюю среду. В отличие от ланцетника у рыб хорошо развита печень, снабженная желчным пузырем. Поджелудочная железа у различных рыб построена по-разному. В некоторых случаях она представлена отдельными мелкими дольками в стенке кишечника, в мезентерии, рассеяна в ткани печени. Нередко уже у рыб она представляет собой компактный орган, включающий в себя как экзокринную часть, которая ответственна за синтез пищеварительных ферментов, так и эндокринную, которая выделяет гормоны, регулирующие углеводный обмен. Таким образом, у рыб наблюдаются все основные стадии эволюции сложной многоклеточной железы, структура и функции которой впоследствии принципиально практически не изменяются.

Единственное отличие пищеварительной трубки земноводных от трубки рыб — ее удлинение и впадение толстой кишки в клоаку.

Существенной особенностью пищеварительной трубки пресмыкающихся является возникновение в ней слепой кишки. У большинства из них она зачаточна, но у некоторых развита весьма существенно. Слепая кишка — важное эволюционное приобретение пресмыкающихся, позволяющее им расширить рацион питания и использовать растительную пищу, переваривание которой сложно и требует участия симбиотических простейших и бактерий. Слепая кишка особенно богата микрофлорой, под действием которой осуществляются процессы брожения, позволяющие наиболее полно использовать пластические вещества растительного происхождения.

У млекопитающих за счет дальнейшей дифференцировки пищеварительного тракта, и в частности больших размеров слепой кишки, резко увеличивается разнообразие используемых продуктов питания и возникает пищевая специализация на травоядность и плотоядность; всеядность встречается редко, в частности в отряде приматов.

Задняя кишка плацентарных млекопитающих дифференцирована, клоака отсутствует и прямая кишка заканчивается анусом.

В онтогенезе человека рекапитулируют основные стадии филогенеза кишечной трубки и ее производных. Из пороков развития, связанных с задержкой эмбриогенеза, известны гипоплазии всей пищеварительной системы, укорочение кишки и недоразвитие любых ее отделов, а также печени и поджелудочной железы. В зависимости от степени недоразвития тяжесть аномалии может быть как незначительной, так и несовместимой с жизнью.

Клинический интерес представляет гетеротопия тканей поджелудочной железы в стенке тонкого кишечника или желудка. Иногда гетеротопированные фрагменты могут симулировать опухолевую трансформацию слизистой оболочки. По данным патологоанатомов, частота этой аномалии — от 0,6 до 5%. Механизм гетеротопии — нарушение клеточной миграции зачатков железы из стенки кишечной трубки. С недоразвитием и задержкой дифференцировки связана и такая аномалия, как персистирование клоаки, при которой мочеполовые пути и прямая кишка объединены. При нормальном развитии после 8-й недели эмбриогенеза клоака должна полностью дифференцироваться на прямую кишку, мочевыделительные и половые протоки.

Органы дыхания

 

Жабры — наиболее ранние специализированные органы дыхания, появляющиеся среди хордовых впервые у рыб. Они представляют собой тонкие складки слизистой оболочки глотки, лежащие на жаберных дугах, снабжаемые венозной кровью через жаберные артерии и распадающиеся здесь на капилляры.

Позади последней жаберной дуги у кистеперых рыб за счет выпячивания вентральной стороны глотки формируется парное образование — плавательный пузырь, который выполняет в первую очередь гидростатические функции, уравновешивая тело рыбы в толще воды. Связь между ним и глоткой, имеющаяся в эмбриогенезе, не прерывается и позже, поэтому воздух при попадании в глотку может беспрепятственно проходить в плавательный пузырь. Эта морфофизиологи-ческая особенность при изменении условий существования кистеперых рыб явилась предпосылкой преобразования плавательного пузыря в легкие (рис. 14.24).

 

 

Рис. 14.24. Плавательный пузырь рыб (А— костной; Б —кистеперой) и развитие легких у человека (В— ранние стадии): 1 —средняя кишка, 2— плавательный пузырь, 3— глотка, 4—развивающиеся легкие

 

У земноводных, связанных по происхождению с кистеперыми рыбами, в личиночном состоянии функционируют жабры, а во взрослом — органами дыхания становятся легкие. В связи с отсутствием грудной клетки и диафрагмы воздух в них попадает из ротовой полости за счет глотательных движений, осуществляющихся подбородочно-подъязычной мышцей. Материал жаберных дуг, следующих за подъязычной дугой, частично редуцируясь, входит в состав хрящей гортани, которая, появляясь впервые у земноводных, является первым органом, относящимся к нижним дыхательным путям. Легкие начинаются непосредственно от гортани. Они крупноячеисты и имеют относительно малую дыхательную поверхность, в связи с чем газообмен в большей степени осуществляется через кожные покровы (см. § 14.1).

Пресмыкающиеся, вышедшие на сушу окончательно, имеют как верхние дыхательные пути (не полностью отграниченную от ротовой полости полость носа), так и нижние — гортань, трахею и бронхи. Их легкие мелкоячеисты, содержат многочисленные внутренние перегородки и обладают большой дыхательной поверхностью. Впервые появляется диафрагма, которая в дыхании принимает скорее пассивное участие, так как она либо лишена мышечных элементов, либо разделяет грудную и брюшную полости не полностью. Механизм дыхания основан на сокращении межреберных мышц, приводящих в движение грудную клетку.

У млекопитающих дыхательные пути, как и у предков, выстланы мерцательным эпителием. Они полностью отделены от пищеварительной системы и только перекрещиваются с ней в глотке. Бронхи многократно разветвляются, вплоть до бронхиол, ведущих в альвеолы — легочные пузырьки, имеющие в сумме огромную площадь поверхности (у человека до 90 м). Основной мышцей, изменяющей объем грудной полости, становится диафрагма.

В эмбриогенезе человека отражается первоначальное единство пищеварительной и дыхательной систем. На этом основано формирование большой группы врожденных пороков развития пищевода и трахеи типа эзофаготрахеальных свищей (рис. 14.25). Нарушением альвеолярной дифференцировки легочной ткани могут быть объяснены дизонтогенетические бронхолегочные кисты — округлые полости в легких, отграниченные от окружающих тканей примитивно построенной стенкой недифференцированного бронха, а также кистозная гипоплазия (недоразвитие) легких (рис. 14.26). При этой патологии недоразвитыми оказываются целые доли легкого, которые представляют собой многочисленные полости, связанные с крупными бронхами и имеющие малую поверхность. Газообмен в таких участках легких резко ослаблен. Широко известны также гипоплазии диафрагмы от небольших дефектов в ее куполе до полной аплазии. Последняя аномалия несовместима с жизнью и встречается обычно вместе с другими множественными пороками развития.

 

 

Рис. 14.25. Различные формы эзофаготрахеальных свищей (А—Г):

1— пищевод, 2— трахея

КРОВЕНОСНАЯ СИСТЕМА

 

Необходимым условием существования высокоорганизованных крупных многоклеточных организмов является наличие жидкой подвижной внутренней среды, которая обеспечивает интеграцию организма в целостную систему, выполняя транспортные функции. Эти функции являются основными для кровеносной системы. Конкретная функция кровеносной системы зависит от того, что она транспортирует: питательные вещества, кислород, углекислый газ, другие продукты диссимиляции или гормоны. Кровеносная система всех хордовых замкнутая и состоит из двух основных артериальных сосудов: брюшной и спинной аорт. По брюшной аорте венозная кровь продвигается кпереди, обогащается кислородом в органах дыхания, а по спинной — кзади. Из спинной аорты кровь через систему капилляров возвращается по венам в брюшную аорту. Брюшная аорта или ее часть, периодически сокращаясь, проталкивает кровь по сосудам (рис. 14.27).

 

 

Рис. 14.26. Кистозная гипоплазия легкого

Рис. 14.27. Строение кровеносной системы водных (А) и наземных (Б) позвоночных:

1 —жаберные артерии, 2—сонная артериям—передняя кардинальная вена, 4— задняя кардинальная вена, 5— спинная аорта, 6— кювьеров проток, 7—подкишечная вена, 8— печеночная вена, 9—брюшная аорта, 10— задняя (нижняя) полая вена, 11 —воротная вена печени, 12— легочная вена, 13— легочная артерия; стрелками указано направление движения крови

 

Эволюция общего плана строения





Поделиться с друзьями:


Дата добавления: 2016-10-23; Мы поможем в написании ваших работ!; просмотров: 520 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Чтобы получился студенческий борщ, его нужно варить также как и домашний, только без мяса и развести водой 1:10 © Неизвестно
==> читать все изречения...

2406 - | 2286 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.014 с.