Газораспределительный механизм предназначен для своевременного впуска в цилиндры двигателя горючей смеси и выпуска отработавших газов в соответствии с протеканием рабочего цикла.
Кроме того, он обеспечивает надежную изоляцию камеры сгорания от окружающей среды во время тактов сжатия и рабочего хода.
Устройство газораспределительного механизма показано на рис. 2.6 и 2.14.
Распределительный вал на большинстве двигателей легковых автомобилей установлен на головке блока цилиндров. Его образуют кулачки (эксцентрики), ко-
Рис. 2.12. Цепной привод ГРМ: 1 - зубчатый шкив привода распределительного вала; 2 - цепь; 3 - успокоитель цепи; 4 - зубчатый шкив привода масляного насоса; 5 - зубчатый шкив коленчатого вала; 6 - башмак натяжителя цепи; 7 - натяжитель цепи |
Рис. 2.13. Ременный привод ГРМ: 1 - зубчатый шкив на коленчатом валу; 2 - зубчатый ремень; 3 - шкив насоса охлаждающей жидкости; 4 - натяжной ролик; 5 - зубчатый шкив распределительного вала |
ГАЗОРАСПРЕДЕЛИТЕЛЬНЫЙ МЕХАНИЗМ
личество которых соответствует количеству клапанов двигателя, т.е. каждый кулачок работает только со своим конкретным клапаном. При вращении распределительного вала его кулачки воздействуют через рычаги на клапаны (помните, ранее мы говорили, что они похожи на гвозди с большими шляпками). Этим обеспечивается своевременное (согласованное с положением поршней в цилиндрах) открытие и закрытие впускных и выпускных клапанов. Вы уже поняли, что для открытия и закрытия клапанов
должен повернуться распределительный (он же кулачковый) вал.
Распределительный вал в двигателях большинства отечественных легковых автомобилей получает вращение от коленчатого вала самым «примитивным» образом: либо с помощью цепной передачи (рис. 2.12), либо зубчатым ремнем (рис. 2.13), натяжение которых можно отрегулировать специальными устройствами. Преимущества ременного привода заключаются в низкой шумности его работы, простоте установки, отсутствии смазки, упрощении конструкции двигателя и снижении его массы. Натяжение в цепном приводе регулируется подпружиненным плунжером, а ремня - роликом. В настоящее время большинство автомобильных двигателей оснащают ременным приводом распределительного вала.
Теперь вновь вернемся к работе одноцилиндрового двигателя и на его примере изучим работу газораспределительного механизма.
Итак, распределительный вал, получив вращение от коленчатого вала, поворачивается. В результате его кулачок набегает на рычаг или непосредственно на толкатель, который нажимает на стержень подпружиненного клапана и, преодолев сопротивление пружины, открывает его (рис. 2.15). При дальнейшем вращении распределительного вала кулачок сбегает с рычага (толкателя) и под воздействием пружины клапан закрывается (рис. 2.16). Кулачки на распределительном валу размещены относительно друг друга определенным образом, и вращение коленчатого и распределительного валов согласовано так, что впускной клапан открывается в начале такта впуска (поршень в цилиндре находится в ВМТ), а выпускной - в начале такта выпуска (поршень в цилиндре находится в НМТ). На самом деле для лучшего наполнения цилиндров рабочей смесью впускной клапан открывается чуть раньше того момента, когда поршень достиг ВМТ, а выпускной (для лучшей очистки от отработавших
Рис. 2.17. Проверка зазора между рычагами и кулачками распределительного вала: 1 - щуп; 2 - регулировочный болт; 3 - контргайка регулировочного болта. |
газов) - несколько раньше, чем поршень добрался до НМТ. В результате впускной клапан начинает открываться в тот момент, когда выпускной клапан еще полностью не закрылся. Такое положение клапанов называется их перекрытием. Во время тактов сжатия или рабочего хода оба клапана в цилиндре надежно закрыты. Тепловой зазор между рычагом и кулачком распределительного вала регулируется на холодном двигателе (рис. 2.17). Этот зазор составляет доли миллиметра и контролируется специальным щупом. Конкретный зазор, необходимый конкретному двигателю, указан в руководстве по его эксплуатации. Известно, что при нагреве тела расширяются, в том числе и детали газораспределительного механизма. Если тепловой зазор станет меньше необходимого, то клапан откроется на большую величину, но самое неприятное то, что он не успеет закрыться в нужный момент либо из-за теплового удлинения его ножки останется приоткрытым. Все это приведет к снижению мощности двигателя, а его длительная эксплуатация в таких условиях - к «прогару» клапана и выходу двигателя из строя. Увеличенный сверх нормы тепловой зазор приведет к тому, что клапан не сможет открываться полностью. Такое нарушение регулировки впускного клапана не позволит горючей смеси в нужном количестве заполнить цилиндр, а выпускного - затруднит очистку цилиндров от отработавших газов. При эксплуатации двигателя необходимо постоянно следить за натяжением цепи или зубчатого ремня привода распределительного вала. Кроме того, владельцам автомашин с двигателями, в которых установлен ременный привод распределительного вала, следует периодически проверять не только натяжение, но и состояние ремня, чтобы не опоздать с заменой. Обрыв ремня при работающем двигателе не только обездвижит автомобиль, но и может привести к серьезной поломке двигателя.
Система охлаждения
При сгорании топливовоздушной смеси выделяется значительное количество тепла, способного вывести из строя агрегаты двигателя. Что же произойдет при перегреве? Подвижные элементы расширятся, поршни заклинит в цилиндрах, а многие детали будут изогнуты или просто сломаны. Кстати, масло при высокой температуре теряет смазывающую способность, разлагаясь на составные части. Для отвода избыточного тепла предназначена система охлаждения. Она же поддерживает оптимальный тепловой режим работы двигателя. На автомобилях в подавляющем большинстве случаев применяется жидкостная система охлаждения.
Рис. 2.18. Система охлаждения двигателя: 1 - пробка расширительного бачка; 2 - датчик уровня охлаждающей жидкости; 3 - расширительный бачок; 4 - шланг от радиатора к расширительному бачку; 5 - выпускной патрубок головки блока цилиндров; 5 - отводящий шланг радиатора; 7 - подводящий шланг радиатора; 8 - датчик включения электродвигателя вентилятора; 9 - левый бачок радиатора; 10 - электродвигатель вентилятора; 11 - вентилятор; 12 - охлаждающие трубки радиатора; 13 - охлаждающие пластины радиатора; 14 - правый бачок радиатора; 15 - сливная пробка радиатора; 16 - ремень привода распределительного вала и насоса охлаждающей жидкости; 17 - насос охлаждающей жидкости; 18 - шланг подвода жидкости к отопи- телю; 19 - шланг отвода жидкости от отопителя; 20 - шланг отвода жидкости к расширительному бачку; 21 - датчик указателя температуры охлаждающей жидкости; 22 - термостат |
Нормальная температура охлаждающей жидкости работающего двигателя составляет 80-95°С. При пуске холодного двигателя система охлаждения помогает двигателю по возможности быстрее достичь рабочей температуры. О том, как это делается, чуть позже. А пока познакомимся с конструкцией этой системы. Жидкостная система охлаждения с принудительной циркуляцией состоит из следующих основных элементов:
- рубашки охлаждения (двойных стенок блока цилиндров и головок, пространство между которыми заполнено охлаждающей жидкостью);
- радиатора, выполняющего функцию теплообменника и состоящего из двух бачков, соединенных большим количеством трубок;
- расширительного бачка, поддерживающего постоянный объем циркулирующей жидкости и определенное давление в системе;
- насоса, обеспечивающего циркуляцию охлаждающей жидкости в системе;
- термостата (автоматического клапана, открывающегося при достижении охлаждающей жидкостью температуры 90-102 °С);
- вентилятора, обеспечивающего прокачку воздуха между трубками радиатора;
- трубопроводов.
Более подробно устройство системы охлаждения представлено на рис. 2.18.
В большинстве автомобилей в качестве охлаждающей жидкости применяют специальные составы с низкой температурой кристаллизации — антифризы (от английского «antifreeze» - незамерзающий). Все охлаждающие жидкости ядовиты, так как представляют собой водный раствор этиленгликоля и могут проникать в организм через кожу. Эта смесь агрессивна не только к организму человека, но и к самой системе охлаждения. Она разрушает сталь, алюминий, чугун, медь. Чтобы уберечь детали системы охлаждения от разрушения, в антифризы добавляют целый комплекс присадок: противокоррозионных (ингибиторы), анти- вспенивающих и стабилизирующих. Предприятия-изготовители присваивают антифризам фирменные названия (например, «Тосол», «Лена» и т.п.) и (или) указывают температуру их замерзания, точнее кристаллизации (Тосол А-40, ОЖ-40, 0Ж-65, где 0Ж - охлаждающая жидкость).
(!) |
Импортные антифризы для легковых автомобилей, произведенные на основе этиленгликоля, должны соответствовать нормам ASTM (Американская ассоциация по испытанию материалов) и SAE (Общество автомобильных инженеров США): ASTM D 3306 и ASTM D 4656. Кроме основных стандартов, большинство изготовителей учитывают и дополнительные требования (например, нормы General Motors USA - Antifreeze Concentrate GM 1899-M, GM 6038-М или система нормативов G концерна Volkswagen). За рубежом также изготавливают антифризы на основе пропиленглико- ля. Такой антифриз менее токсичен, однако он почти на порядок дороже.
В процессе эксплуатации антифриз стареет: в нем снижается концентрация ингибиторов, ухудшается теплопередача, возрастает пенообразование, он начинает вступать в реакции с деталями системы охлаждения. Ресурс охлаждающий жидкости связан с пробегом автомобиля. Преждевременное старение наступает в том случае, если в систему охлаждения проникают отработавшие газы или регулярно попадает воздух. Поэтому необходимо своевременно обнаруживать утечки жидкости и следить за состоянием и креплением трубопроводов. Своевременно заменяйте антифриз. Сроки замены указаны в инструкции по эксплуатации вашего автомобиля. Уровень антифриза в системе охлаждения может понизиться при испарении из него воды или при утечках (негерметичности системы). В первом случае нужно доливать дистиллированную воду (если ее нет, то хотя бы прокипяченную), во втором - охлаждающую жидкость той же марки. Отечественные антифризы можно смешивать, если они произведены по одним техническим условиям (ТУ). Если номера ТУ различаются, то охлаждающие жидкости могут быть несовместимы. Поэтому в сомнительных случаях целесообразно использовать воду, а затем заменить всю жидкость в системе.
При перегреве двигателя все манипуляции проводите после его остановки с особой осторожностью. Берегитесь ожогов. Не спешите, дайте двигателю немного остыть. Не открывайте сразу крышку расширительного бачка или пробку радиатора. Кипящий антифриз в системе находится под давлением. Даже по прошествии времени открывайте пробку или крышку, взяв в руку тряпку и отвернув в сторону лицо. Сливайте антифриз только после того, как он остынет. |
Механический насос (помпа) обеспечивает циркуляцию охлаждающей жидкости по полым зонам неподвижных частей двигателя (рубашке охлаждения). Тепло, образующееся при работе двигателя, поглощается циркулирующей жидкостью, а при прохождении последней через радиатор - воздухом. Радиатор отдает тепло воздуху, который обтекает трубки. Воздух проходит через радиатор под действием электрического вентилятора или в некоторых автомобилях механического вентилятора, который приводится в движение от коленчатого вала (в последнем случае вентилятор работает постоянно, пока работает двигатель). В большинстве автомобилей, выпускаемых в настоящее время, используются электрические вентиляторы. Они включаются при достижении определенной температуры охлаждающей жидкости. В остальное время охлаждение происходит воздухом, проходящим через радиатор за счет движения транспортного средства. При нагревании тела расширяются, то же самое происходит и с охлаждающей жидкостью. Вы, наверное, обращали внимание, как пластиковая бутыль для воды, даже пустая, разбухает в теплом помещении и сморщивается на холоде. Для предохранения от разрушения элементов системы охлаждения при нагревании жидкости использован расширительный бачок. Именно в него отводится избыточная жидкость и пар, а с помощью клапана, которым оборудована его крышка, удаляется избыточное давление. Но это еще не все. При остывании двигателя расширительный бачок предохраняет систему от сдавливания трубок радиатора. Вы уже знаете, что система охлаждения должна отводить избыточное (лишнее) тепло от двигателя. А вот при пуске холодного двигателя, чтобы она не мешала ему быстрее достичь оптимальной температуры, используют специальный клапан, который перекрывает доступ охлаждающей жидкости из рубашки охлаждения к радиатору. Этот клапан называется термостатом.
При пуске холодного двигателя (рис. 2.19) термостат (поз. 4) остается закрытым и охлаждающая жидкость не может проходить через радиатор, она циркулирует только в головке блока и самом блоке цилиндров (движение жидкости по малому кругу). В результате двигатель быстро прогревается. При достижении охлаждающей жидкостью установленной температуры термостат открывает ей доступ в радиатор для охлаждения (движение жидкости по большому кругу). А уж если радиатор не справляется с охлаждением жидкости до необходимой температуры, в дело вступает электровентилятор.
Рис. 2.19. Принципиальная схема системы охлаждения: 1 - радиатор; 2 - крышка; 3 - вентилятор; 4 - термостат; 5 - насос охлаждающей жидкости; 6 - расширительный бачок; 7 - головка блока цилиндров; 8 - трубопровод к отопителю; 9 - вентилятор отопителя; 10 - радиатор отопителя; 11 - рубашка охлаждения головки блока цилиндров; 12 - рубашка охлаждения блока цилиндров; 13 - поршень; 14 - сливной кран; 15 - нижний бачок радиатора |
Отопитель салона тоже относится к системе охлаждения. Главный его элемент - радиатор. Заметьте, не тот, основной, который расположен перед двигателем и спрятан за декоративной отделкой передней части автомобиля, а другой, меньших размеров, расположенный за двигателем. Включая отопитель, водитель открывает кран и горячий антифриз попадает в радиатор. Так нагревается воздух, поступающий в салон автомобиля. Включать отопитель следует при прогретом двигателе. Включение отопителя при холодном двигателе лишь увеличит время прогрева последнего со всеми вытекающими последствиями (вы же знаете, что, пока двигатель не прогрелся до необходимой температуры, происходит повышенный износ его узлов и агрегатов). А вот если двигатель перегревается, то включение ото-
пителя позволит снизить температуру охлаждающей жидкости и отвести избыток тепла от двигателя. Как уже говорилось, перегрев весьма опасен для двигателя. Поэтому в поездке, бросая взгляд на приборный щиток, не оставляйте без внимания указатель температуры охлаждающей жидкости. К сожалению, подавляющее большинство легковых автомобилей не оборудовано сигнализатором, предупреждающим о начале повышения температуры охлаждающей жидкости свыше допустимого. Поэтому внимание и еще раз внимание. Если температура растет, а электрический вентилятор не включается, то вот вам и причина. Правда выйти из строя может как он сам, так и его система управления и даже сгоревший предохранитель. Если неисправность не устранена на месте, то следовать к месту ремонта придется с продолжительными остановками, охлаждая двигатель. В такой ситуации поможет включение на полную мощность отопителя. Запомните самое главное: как только стрелка указателя температуры охлаждающей жидкости приближается к красной зоне, тотчас останавливаемся, глушим двигатель, открываем капот и ждем. Еще одна причина перегрева - неисправность термостата. Обычно это его банальное заклинивание в закрытом положении. В результате охлаждающая жидкость циркулирует по малому кругу, не попадая в радиатор.
Вы помните, ведь это режим прогрева двигателя, после которого клапан термостата должен открыться. В том, что термостат заклинило в закрытом положении, убедимся на ощупь. Если при перегревающемся двигателе радиатор остается холодным, то все дело в термостате. Надо его менять. Однако попробуйте постучать по его корпусу. Бывает, что после этого клапан термостата открывается. Но в дальнейшем при первой возможности заметите термостат. Если постукивание не помогает, то к месту ремонта вновь движемся, внимательно следя за датчиком температуры, даже в жару включив отопи- тель на полную мощность.
Если до места ремонта очень далеко, то можно снять термостат (предварительно слив антифриз), пробить в нем внутри сквозное отверстие и поставить на место. В этом случае жидкость в системе будет циркулировать только по большому кругу и проходить через радиатор. Но это, как говорится, для продвинутых пользователей.
Система смазки
При работе двигателя множество деталей контактирует друг с другом, образуя пары трения (фрикции). Чтобы уменьшить фрикционный износ, двигатель оборудуют системой смазки. Резервуар с маслом находит-
ся в картере двигателя. Масляный насос обеспечивает поступление масла через масляный фильтр к движущимся частям. В двигателях внутреннего сгорания применяется система смазки комбинированного типа: часть деталей смазывается под давлением, часть - разбрызгиванием и окунанием, часть - самотеком. Кроме функций смазывания, масло может выполнять и функции охлаждения. Воздушный поток, проходящий под днищем движущегося автомобиля, обдувает картер двигателя, являющийся резервуаром для масла. Кроме того, на некоторых автомобилях и мотоциклах устанавливают специальные масляные радиаторы, призванные охлаждать масло. Это одновременно предохраняет масло от распада при высоких температурах. Система смазки состоит из следующих основных элементов (рис. 2.20):
- поддона картера;
- масляного насоса с заборником;
- масляного фильтра;
- трубок, каналов и отверстий для подачи масла. Теперь немного подробнее об основных элементах системы смазки.
В поддоне картера, как уже указывалось, хранится масло. По этому признаку систему смазки двигателей легковых автомобилей называют системой смазки с мокрым картером. Уровень масла в картере контролируют с помощью маслоизмерительного стержня (щупа). На щупе выполнены две риски, соответствующие минимальному и максимальному уровню масла. Ваша задача - периодически контролировать уровень масла, не допуская его падения ниже отметки минимума. Для проверки автомобиль должен стоять на ровной горизонтальной площадке, после остановки двигателя должно пройти некоторое время, чтобы масло, циркулирующее по системе, стекло в картер и немного остыло. Масло следует заменять в сроки, указанные предприятием-изготовителем вашего автомобиля. Эти сроки всегда совпадают со сроками очередного технического обслуживания (ТО). Однако если сроки ТО еще не подошли, а вы, проверяя уровень масла, обнаружили его сильную загрязненность (возможно, двигателю пришлось работать длительное время в тяжелых условиях), то масло необходимо заменить досрочно. Масляный насос шестеренчатого типа создает в системе смазки необходимое давление масла и подает его к трущимся поверхностям (рис. 2.21). Масляный фильтр очищает масло от загрязнений и частиц, вырабатываемых в результате механического износа. В фильтре установлен перепускной клапан. При повышенной вязкости масла или чрезмерном загрязнении фильтра под действием повышенного давления перепускной клапан открывается и направляет масло мимо фильтра (без очистки). Это позволяет сохранить необходимое давление масла в системе. Масляный фильтр обычно заменяют одновременно с заменой масла двигателя.
Рис. 2.21. Схема работы масляного насоса: 1 - шестерни масляного насоса; 2 - редукционный клапан; 3 - пружина |
1 2 3 |
Рис. 2.22. Схема вентиляции картера двигателя: 1 - корпус воздушного фильтра; 2 - фильтрующий элемент; 3 - всасывающий коллектор вентиляции картера; 4 - карбюратор; 5 - впускной трубопровод; 6 - впускной клапан; 7 - шланг вентиляции картера; 8 - маслоотделитель; 9 - сливная трубка маслоотделителя; 10 - картер двигателя; 11 - поддон картера |
Вентиляция картера необходима для поддержания в нем нормального давления, а также для удаления паров бензина и газов, прорывающихся из цилинд-
ров (рис. 2.22). Для чего все это нужно? Дело в том, что повышение давления в картере может привести к выходу из строя уплотнений и, как следствие, утечке масла. А пары бензина и газов, скопившись в картере, загрязняют и разжижают масло, вызывают коррозию (разрушение) деталей двигателя. Вентиляция картера выполняется путем принудительного отсоса указанных газов за счет разрежения, возникающего при такте впуска каждого из цилиндров двигателя. В результате эти газы втягиваются во впускной коллектор и вновь направляются в цилиндры. Теперь несколько подробнее о работе системы смазки. Как только вы запустили двигатель, масло из картера через сетку маслозаборника засасывается шестеренчатым насосом и через фильтр нагнетается в главную магистраль, расположенную в блоке цилиндров. Оттуда оно по каналам в блоке подается к коренным подшипникам коленчатого вала и далее по каналам в щеках вала к шатунным подшипникам. Излишек масла выдавливается через зазоры шатунных подшипников и превращается в масляный туман. С его помощью смазываются стенки цилиндров, поршневые пальцы и другие детали двигателя. Из главной магистрали масло также подается к подшипникам распределительного вала, распределительным шестерням и к полым осям коромысел клапанов. Далее масло самотеком направляется в картер. Постоянное давление в системе смазки поддерживает редукционный клапан (см. рис. 2.21). При повышении давления сверх необходимого он вновь возвращает часть масла во всасывающую магистраль насоса.
В двигателях используют специальные моторные масла. Стандартная марка отечественного автомобильного моторного масла включает букву «М» (т.е. моторное), цифру или дробь, которая определяет класс автомобильного моторного масла либо классы (для всесезон- ных автомобильных моторных масел) вязкости. Летом используют более вязкое масло, зимой - менее вязкое. Чем больше цифра в маркировке, тем более вязкое масло. Например, М-12Г1 - летнее, М-8Г1 - зимнее. Существуют и всесезонные масла, которые можно использовать круглый год. Далее в маркировке автомобильного моторного масла присутствуют одна или две буквы, указывающие уровень эксплуатационных свойств и область применения автомобильного моторного масла. Например, М-бз/ 12Г1, где буква «Г» означает, что масло всесезонное, предназначено для форсированных двигателей, 1 - для бензиновых двигателей. В состав этих автомобильных моторных масел добавляют композиции отечественных или импортных присадок. Об этом сообщает индекс после первой цифры. В нашем случае индекс «з» информирует о наличии загущающих присадок.
За рубежом принято классифицировать масла по вязкости по системе, разработанной Обществом автомобильных инженеров США (Society of Automotive Engineers - SAE). На полках автомагазинов вы увидите канистры с маслами, имеющими маркировку 5W-40,10W-40 и т.п. В такой маркировке первое число и буква «W» (Winter - зима) свидетельствуют о принадлежности масла к так называемому зимнему, низкотемпературному классу вязкости. Первая цифра указывает, насколько легко масло будет прокачиваться по системе смазки, т.е. как быстро поступит к рабочим поверхностям деталей, и сколько энергии аккумуляторной батареи будет затрачено на привод стартера (вязкость при 40 °С). Чем меньше первая цифра, тем легче пуск двигателя на морозе. Летом же масло должно быть более вязким, чтобы сохранять смазывающую способность. Чем больше вторая цифра, тем выше вязкость масла в летний период. Число, которое указано после тире, - это летний (высокотемпературный) класс вязкости, соответствующий вязкости масла при рабочей температуре мотора (при 100 °С). То есть такое масло можно использовать и зимой и летом - оно всесезонное. Первая цифра информирует об эксплуатационных свойствах масла в зимний период, вторая - в летний. Масла автомобильных двигателей могут быть минеральными, синтетическими и полусинтетическими. Смешивать их нельзя. При переходе с одного вида масла на другой систему смазки необходимо промыть специальной жидкостью.
Система питания
Система питания - это своеобразный «пищеблок» двигателя. В ней топливо хранится, очищается, перемещается, смешивается с предварительно очищенным ею же воздухом. Полученное блюдо в виде горючей смеси подается в цилиндры двигателя. На различных режимах работы двигателя количество и качество горючей смеси должно быть различным, приготовление таких «разносолов» - тоже прерогатива системы питания. Подавляющее большинство легковых автомобилей оснащено бензиновыми двигателями. В зависимости от вида устройства, осуществляющего подготовку топ- ливовоздушной смеси, двигатели могут быть инжекторными, карбюраторными или оборудованными моновпрыском.
Система питания (рис. 2.23 и 2.24) состоит из следующих основных элементов:
- топливного бака;
- фильтров очистки топлива;
- топливопроводов;
- топливного насоса;
- воздушного фильтра;
- карбюратора (см. рис. 2.23) или инжектора с электронной системой управления (см. рис. 2.24);
- выпускной системы.
Топливный бак (или бензохранилище) представляет собой специальную металлическую емкость вместимостью 40-50 л, чаще всего установленную в задней части легкового автомобиля. Топливо в бензобак заливают через горловину, в которой имеется трубка для выхода воздуха при заправке. На некоторых автомобилях в самой нижней точке бензобака предусмотрена сливная пробка, позволяющая при необходимости полностью очистить бак от нежелательных составляющих бензина - воды и прочей «нечисти».
Рис. 2.23. Система питания карбюраторного двигателя: 1 - воздухозаборник холодного воздуха; 2 - терморегулятор; 3 - воздушный фильтр; 4 - фильтрующий элемент; 5 - воздухозаборник теплого воздуха от двигателя; 6 - карбюратор; 7 - рычаг привода топливного насоса; 8 - трубопровод подачи топлива из бака; 9 - топливный насос; 10 - трубопровод слива избытка топлива; 11 - эксцентрик распределительного вала; 12 -топливный насос в разрезе; 13 - рычаг ручной подкачки топлива; 14 - наливная труба; 15 - толкатель; 16 - датчик указателя уровня топлива; 17 - топливный бак; 18 - магистраль слива топлива; 19 - магистраль подачи топлива |
Бензин, залитый в бак легкового автомобиля, предварительно очищается сетчатым фильтром, установленным внутри бака на топливозаборнике. Еще в бензобаке размещен датчик уровня топлива (поплавок с реостатом), показания которого выводятся на щиток приборов. У большинства легковых автомобилей при уменьшении уровня бензина до 5-8 л на щитке приборов загорается лампочка, сигнализирующая о необходимости дозаправки.
Из топливного бака бензин под днищем автомобиля подается по трубке топливопровода к карбюратору, по пути проходя через фильтр тонкой очистки. Этот фильтр является одноразовым (т.е. не подлежит прочистке, а попросту заменяется новым) и может быть установлен как перед топливным насосом, так и после него. Топливный насос доставляет бензин из бака, расположенного в задней части автомобиля, в инжектор или карбюратор, установленные на двигателе. Топливные насосы бывают механические и электрические. Механические насосы используют для машин с карбюраторными двигателями. На автомобили, оборудованные электронным впрыском, устанавливают электрические насосы.
Насос подает бензин в устройство, в котором готовится топливная смесь: испарения бензина смешиваются
Рис. 2.24. Система питания инжекторного двигателя с электронной системой управления: 1 - рампа форсунок; 2 - электромагнитные форсунки; 3 - регулятор давления топлива; 4, 6 - топливопроводы слива и подачи; 5 - топливный бак; 7 - электробензонасос; 8 - топливный фильтр |
с воздухом, который всасывается через воздушный фильтр либо нагнетается турбиной. Подготовленная таким образом смесь поступает в цилиндры двигателя, где и сгорает.
Сначала рассмотрим систему питания карбюраторного двигателя.
Механический насос (рис. 2.25) состоит из корпуса, подпружиненной диафрагмы с механизмом привода, впускного и нагнетательного (выпускного) клапанов и сетчатого фильтра.
Топливный насос на разных марках автомобилей приводится в действие либо эксцентриком (кулачком) распределительного вала, либо эксцентриком, размещенным на валу привода масляного насоса и прерывателя-распределителя. В обоих случаях вращающийся эксцентрик качает рычаг привода топливного насоса, прижатый к нему пружиной. Этот рычаг воздействует на шток с подпружиненной диафрагмой. Когда рычаг тянет шток с диафрагмой вниз, пружина диафрагмы сжимается и над ней создается разрежение, под действием которого впускной клапан, преодолев усилие своей пружины, открывается. Через этот клапан топливо из бака втягивается в пространство над диафрагмой (см. рис. 2.25). Когда рычаг освобождает шток диафрагмы (часть рычага, связанная со штоком, перемещается вверх), диафрагма под действием собственной пружины также перемещается вверх, впускной клапан закрывается и бензин выдавливается через нагнетательный клапан к карбюратору (рис. 2.26). Этот процесс происходит при каждом повороте приводного вала с эксцентриком. Заметьте, что бензин в карбюратор выталкивается только за счет усилия пружины диафрагмы при перемещении ее вверх. При заполнении карбюратора до необходимого уровня его специальный игольчатый клапан перекроет доступ бензина в его «чрево». Так как качать бензин будет некуда, диафрагма топливного насоса останется в нижнем положении: ее пружина будет не в силах преодолеть создавшееся сопротивление. И лишь когда двигатель израсходует часть топлива из карбюратора, его игольчатый клапан откроется и диафрагма под действием пружины сможет втолкнуть новую порцию топлива из бензонасоса в карбюратор. Кстати, бензонасос имеет еще и рычажок, выступающий из его корпуса наружу. Он предназначен для ручной подкачки топлива (например, в том случае, когда из-за длительного перерыва в эксплуатации топливо испарилось из карбюратора).
Рис. 2.25. Схема работы топливного насоса (момент всасывания топлива): 1 - нагнетательный патрубок; 2 - стяжной болт; 3 - крышка; 4 - всасывающий патрубок; 5 - впускной клапан с пружиной; 6 - корпус; 7 - диафрагма насоса; 8 - рычаг ручной подкачки; 9 - тяга; 10 - рычаг механической подкачки; 11 - пружина; 12 - шток; 13 - эксцентрик; 14 - нагнетательный клапан с пружиной |
Рис. 2.26. Схема работы топливного насоса (момент нагнетания топлива): 1 - фильтр очистки топлива |
3—Ч |
Рис. 2.27. Воздушный фильтр: 1 - крышка; 2 - фильтрующий элемент; 3 - воздухозаборник; 4 - корпус |
Воздушный фильтр (рис. 2.27) очищает воздух от пыли и прочих механических примесей перед поступлением его в карбюратор для последующего смешивания с бензином. Он установлен на карбюратор сверху. В воздушный фильтр воздух поступает через трубу воздухозаборника, которая затем разделяется на две части. Через одну часть холодный воздух всасывается в теплую погоду («лето»), через другую часть воздух, подогретый выпускным коллектором, - в холодную погоду («зима»). Переход от «лета» к «зиме» (и наоборот) на разных автомобилях выполняется по-разному: либо с помощью специального рычажка-переключателя, либо поворотом корпуса воздушного фильтра, либо автоматически.
Своевременно заменяйте фильтрующий элемент, поскольку «экономия» на замене аукнется повышенным расходом топлива из-за переобогащения горючей смеси бензином и всеми прочими неприятностями, возникающими при таком «перекорме» двигателя.
ОБЩЕЕ УСТРОЙСТВО КАРБЮРАТОРА
Карбюратор (его можно назвать «главным поваром» двигателя) предназначен для приготовления горючей смеси. В зависимости от режимов работы двигателя карбюратор готовит ему необходимую по качеству (соотношению бензина и воздуха) и количеству топли- вовоздушную смесь.
Карбюратор - один из самых уважаемых водителями приборов автомобиля. Рассмотрим устройство и работу элементарного карбюратора.
Элементарный карбюратор (рис. 2.28) состоит из следующих основных частей:
- входного патрубка;
- смесительной камеры с диффузором;
- дроссельной заслонки;
- поплавковой камеры;
- поплавка;
- игольчатого запорного клапана с седлом;
- топливного жиклера;
- трубки распылителя.
В поплавковой камере постоянный уровень топлива поддерживается поплавком, соединенным с игольчатым клапаном. По мере расходования топлива поплавок опускается, открывается игольчатый клапан и новая порция бензина вливается в топливную камеру. При достижении нормального уровня в поплавковой камере поплавок, всплывая, закрывает иглой входное отверстие и прекращает доступ бензина. Если вам это не совсем понятно, то вспомните работу бачка унитаза. Аналогичное устройство размещено и в поплавковой камере карбюратора.
По трубке распылителя бензин из поплавковой камеры попадает в смесительную камеру, где смешивается с поступающим из входного патрубка воздухом. Уровень топлива в поплавковой камере несколько ниже кромки выходного отверстия распылителя, поэтому при неработающем двигателе топливо из поплавковой камеры не вытекает даже при наклонном положении машины. Для дозирования бензина в нижнюю часть трубки распылителя ввернут жиклер, представлявший собой пробку с калиброванным отверстием. Диффузор (суженный внутри короткий патрубок) служит для увеличения скорости воздушного потока в центре смесительной камеры и создания разрежения около конца распылителя (при работающем двигателе), что необходимо для высасывания топлива из топливной камеры и лучшего его распыления. Количество горючей смеси, подаваемой в цилиндры двигателя, регулируется дроссельной заслонкой, связанной с педалью «газа». Эта заслонка изменяет площадь проходного сечения за смесительной камерой. Водитель управляет заслонкой с помощью педали «газа».
Простейший карбюратор не способен приготовлять оптимальную по составу горючую смесь на всех режимах работы двигателя. При увеличении степени открытия дроссельной заслонки смесь будет обогащаться. Оптимальное же изменение состава смеси должно быть другим. Современные карбюраторы бензиновых двигателей обеспечивают создание горючей смеси, по составу близкой к оптимальной, на всех режимах работы двигателя. Они значительно отличаются от элементарного карбюратора главным образом за счет наличия дополнительных вспомогательных устройств, позволяющих на тех или иных режимах работы двигателя в той или иной степени обеднять или обогащать смесь. Различают карбюраторы с восходящим, горизонтальным и падающим потоком. Наиболее часто используют карбюраторы с падающим потоком, в которых смесь в смесительной камере движется сверху вниз. Карбюратор может иметь одну или две камеры. В последнем случае они могут устанавливаться последовательно или параллельно. Чаще всего используются двухкамерные карбюраторы с параллельным расположением камер. В общем случае современный карбюратор состоит из следующих основных устройств: главного дозирующего устройства, пускового устройства, системы холостого хода, экономайзера, ускорительного насоса, балансировочного устройства и ограничителя частоты вращения коленчатого вала. Иногда в состав карбюратора входят также эконостат и система принудительного холостого хода. Водитель, находясь в салоне автомобиля, «общается» с карбюратором не только правой ногой (нажимая на педаль «газа»), но и рукой. Обычно под панелью приборов или прямо на ней есть специальная рукоятка, которая управляет воздушной заслонкой карбюратора. Водители называют эту рукоятку «подсосом». Вытягивая ее, водитель прикрывает воздушную заслонку, сокращая доступ воздуха и увеличивая разрежение в смесительной камере карбюратора. В результате этого бензин из поплавковой камеры высасывается более интенсивно и при недостатке воздуха «готовит» для двигателя обогащенную горючую смесь. А именно такая смесь необходима для пуска холодного двигателя. О включении «подсоса» (вытягивании рукоятки на себя) просигнализирует лампа на щитке контрольно-измерительных приборов.
По мере прогрева следует постепенно утапливать ручку «подсоса», возвращая ее в первоначальное положение. При этом вы будете приоткрывать воздушную за- слонку,увеличивая доступ воздуха и обедняя горючую смесь. После прогрева утопите рукоятку «подсоса» до предела, открыв полностью воздушную заслонку карбюратора. При этом погаснет лампочка, сигнализирующая о прикрытии воздушной заслонки. Заметьте: движение с прогретым двигателем должно осуществляться именно с полностью открытой воздушной заслонкой.
Степень прогрева двигателя вы можете контролировать по указателю температуры охлаждающей жидкости, расположенному на щитке приборов. При пуске холодного двигателя карбюратор должен обеспечивать создание значительно обогащенной смеси, способной воспламеняться даже при низкой температуре.
Перед пуском воздушную заслонку карбюратора необходимо полностью закрыть, т.е. рукоятку «подсоса» следует полностью вытянуть (рис. 2.29). Во время холостого хода, когда автомобиль движется «накатом» или стоит на месте, а водитель не нажимает на педаль «газа», в цилиндры подается небольшое количество горючей смеси, но она должна быть обогащенной, чтобы двигатель работал устойчиво. Воздушная заслонка полностью открыта (рукоятка утоплена), а дроссельная заслонка закрыта (еще раз повторим: водитель не нажимает на педаль «газа»). На средних нагрузках в цилиндры нужно подавать разное количество смеси, причем она должна быть слегка обедненной, что необходимо для экономичной работы двигателя. Воздушная заслонка полностью открыта, а водитель нажатием на педаль «газа» заставляет двигатель работать на средних оборотах. При полной нагрузке (значительном, но плавном нажатии на педаль «газа») для получения наибольшей мощности двигателя необходимо готовить в карбюраторе обогащенную смесь.
Для обеспечения хорошей приемистости двигателя,
т.е. способности быстро увеличивать частоту вращения коленчатого вала (например, резкое нажатие на педаль «газа» для интенсивного разгона при обгоне), необходимо при быстром открытии дроссельной заслонки также подавать в цилиндры обогащенную смесь. Наиболее экономично карбюратор работает на средних нагрузках. Некоторые легковые автомобили оборудованы эконометрами - приборами, показывающими, какое количество топлива расходует в данный момент двигатель. Пользуясь такой информацией, водитель может подобрать оптимальный режим работы двигателя для конкретных условий движения. Езда рывками (резкий разгон с последующим замедлением) не только удручающе действует на пассажиров, но и увеличивает расход топлива, так как при резком нажатии на педаль «газа» двигателю (для быстрого набора оборотов и исключения провалов в работе)требуется обогащенная смесь. Это «богатство» достигается с помощью ускорительного насоса - специального устройства карбюратора, выпрыскивающего в смесительную камеру дополнительную порцию бензина (см. рис. 2.30).
Несколько слов о традиционных неисправностях системы питания и способах их устранения.
Если бензин не поступает в карбюратор, то первым делом установите, есть ли он вообще в баке. Что делать, если его там нет, вы, наверное, знаете. Если бензин на месте, то преградить ему путь к карбюратору может засорение сетчатого фильтра топливозабор- ника или фильтра тонкой очистки, а также разрежение в топливном баке, возникающее из-за «закупорки» воздушного клапана в пробке или вентиляционной трубки бака. Зимой путь бензину может перекрыть замерзшая вода, скопившаяся в системе питания. Она тяжелее бензина (имеет большую плотность) и скапливается на дне бака, как раз там, где расположен топливозаборник. Прочистка, продувка или замена элементов, блокирующих дорогу бензину, откроет ему путь к карбюратору. Топливный бак в специальном обслуживании чаще всего не нуждается, однако следите за чистотой его пробки и воздухоотводящей трубки. Необходимость полной очистки и промывки бака может возникнуть при попадании в него воды или прочей «нечисти». В настоящее время в продаже имеются препараты, позволяющие расправиться с водой и прочими нечистотами без ручной чистки.
Причиной «бойкота» может стать неисправность топливного насоса. Если порвалась диафрагма насоса и ее нечем заменить, бывалые водители используют вместо нее целлофан, сложенный в несколько раз. Насос может не работать и вследствие поломки пружин, рычага, заклинивания клапанов. Здесь поможет промывка, прочистка и замена вышедших из строя деталей.
Если двигатель работает с перебоями, не развивает полной мощности, следует проверить уровень топлива в поплавковой камере. Если он в норме, то проверьте чистоту топливных и воздушных фильтров, жиклеров и каналов, а также регулировку карбюратора. Кстати, в перебоях в работе двигателя может оказаться виноват вовсе не карбюратор, а отсутствие или уменьшение зазора в контактах системы зажигания (в автомобилях с такой системой зажигания). Проверить этот зазор гораздо проще, чем снимать, разбирать, проверять, промывать и регулировать карбюратор. Негерметичность топливной системы - весьма опасная неисправность. Она возникает вследствие нарушения целостности элементов системы питания и разгерметизации соединений топливопровода. При обнаружении указанных неисправностей немедленно замените поврежденные элементы, подтяните хомуты креплений топливных шлангов. Если же в бензобаке образовалась трещина, то доехать до автомастерской вам поможет обычное мыло, которым можно замазать повреждение.
Рис. 2.29. Простейший карбюратор с закрытой воздушной заслонкой: 1 - поплавок; 2 - игольчатый клапан; 3 - распылитель; 4 - воздушная заслонка; 5 - диффузор; 6 - дроссельная заслонка; 7 - впускной клапан |
Загрязнение воздушного фильтра повышает расход топлива и увеличивает концентрацию вредных веществ в выхлопных газах. Длительная эксплуатация автомобиля с загрязненным воздушным фильтром может привести к образованию нагара внутри цилиндров двигателя. Во избежание этого своевременно заменяйте фильтрующий элемент в сроки, установленные заводом-изготовителем. Имейте в виду, что при эксплуатации ма
шины на пыльных трассах фильтр загрязняется гораздо быстрее.
Нарушение регулировки карбюратора, загрязнение жиклеров и каналов не дают возможности двигателю получать необходимую горючую смесь, что незамедлительно сказывается на его работе. Признаками излишнего переобогащения топливной смеси являются:
- повышенный расход топлива;
- потеря мощности двигателя;
- черный дым и хлопки из глушителя;
- перегрев двигателя;
- снижение вязкости масла сверх допустимого. Переобогащение возникает из-за высокого уровня топлива в поплавковой камере, увеличения отверстий жиклеров или повреждения их прокладок, засорения воздушных фильтров и жиклеров, неполного открытия воздушной заслонки карбюратора.
Признаки излишнего переобеднения:
- затрудненный пуск двигателя;
- хлопки в карбюраторе;
- перегрев и потеря мощности двигателя.
Причинами приготовления бедной смеси может стать уменьшение подачи бензина, подсос воздуха через прокладку крепления карбюратора к впускному коллектору, засорение топливных жиклеров и увеличенное проходное сечение воздушных жиклеров. При обслуживании карбюратора его корпус очищают снаружи и внутри, продувают сжатым воздухом жиклеры и каналы, проверяют и при необходимости регулируют уровень бензина в поплавковой камере, проводят регулировку оборотов холостого хода двигателя с помощью винтов, отвечающих за качество и количество топливовоздушной смеси.
Изучив руководство по устройству и обслуживанию своего автомобиля, вы можете самостоятельно заняться промывкой и наладкой карбюратора. При этом соблюдайте все правила пожарной безопасности. Это особенно касается курильщиков. Однако лучше проводить работы с карбюратором в специальных мастерских, где имеются стенды для проверки правильности регулировки карбюратора.
Итак, подведем промежуточный итог: карбюратор — это сложное механическое устройство, смешивающее бен-
Рис. 2.30. Устройство карбюратора: 1 - патрубок для отсоса картерных газов; 2 - патрубок для подачи разрежения к вакуумному регулятору распределителя зажигания; 3 - топливный жиклер переходной системы второй камеры с трубкой; 4 - эмульсионная трубка первой камеры; 5 - эмульсионный канал системы холостого хода; 6 - шариковый клапан ускорительного насоса; 7 - кулачок привода ускорительного насоса; 8 - диафрагма ускорительного насоса; 9 - рычаг привода ускорительного насоса; 10 - диафрагма пускового устройства; 11 - шток диафрагмы пускового устройства; 12 - электромагнитный запорный клапан; 13 - топливный жиклер холостого хода; 14 - главный воздушный жиклер первой камеры; 15 - воздушный жиклер холостого хода; 16 - проточный канал холостого хода; 17 - воздушная заслонка; 18 - распылитель главной дозирующей системы первой камеры; 19 - распылитель ускорительного насоса с клапаном подачи топлива; 20 - распылитель главной дозирующей системы второй камеры; 21 - впрыскивающая трубка эконостата; 22 - главный воздушный жиклер второй камеры;
23 - воздушный жиклер переходной системы второй камеры;
24 - крышка карбюратора; 25 - отверстие балансировки поплавковой камеры; 26 - игольчатый клапан поплавковой камеры; 27 - жиклер перепуска топлива в бак; 28 - патрубок слива топлива в бак; 29 - топливный фильтр; 30 - патрубок подачи топлива; 31 - диафрагма экономайзера; 32 - воздушный канал экономайзера мощностных режимов; 33 - топливный жиклер экономайзера мощностных режимов; 34 - шариковый клапан экономайзера мощностных режимов; 35 - поплавок; 36 - топливный канал экономайзера мощностных режимов; 37 - топливный жиклер эконостата с трубкой; 38 - топливный жиклер переходной системы второй камеры с трубкой; 39 - эмульсионная трубка; 40 - главный топливный жиклер второй камеры; 41 - корпус карбюратора; 42 - выходные отверстия переходной системы второй камеры; 43 - дроссельная заслонка второй камеры; 44 - отверстие воздушного канала холостого хода; 45 - дроссельная заслонка первой камеры; 46 - щель переходной системы первой камеры; 47 - регулировочный винт качества смеси холостого хода зин с воздухом в определенных пропорциях и осуществляющее доставку подготовленной смеси к цилиндрам двигателя. Простейший карбюратор доставляет топливо пропорционально количеству воздуха, проходящего через него. Чтобы подготавливать топливовоздушную смесь для разных режимов работы двигателя, карбюратор оснащают разнообразными приспособлениями. Схема работы и основные элементы двухкамерного карбюратора показаны на рис. 2.30. Значительное количество каналов, жиклеров и механических элементов снижает надежность карбюратора.
ОБЩЕЕ УСТРОЙСТВО ИНЖЕКТОРНЫХ СИСТЕМ ПИТАНИЯ
С середины 80-х годов прошлого века карбюраторы стали вытесняться более эффективными инжекторными системами. Главными преимуществами этих систем по сравнению с карбюраторами являются лучшие пусковые свойства (они меньше зависят от окружающей температуры), надежность, экономичность, лучшие мощностные характеристики, а также меньшая токсичность выхлопа. Однако инжекторные системы более привередливо относятся к качеству бензина. Не допускается работа двигателей с системой впрыска топлива на этилированном бензине. Это приводит к выходу из строя нейтрализатора и датчика концентрации кислорода.
Инжектор в переводе с английского - форсунка. Первые системы питания, использовавшие принцип впрыска, появились в конце XIX века, однако из-за сложной конструкции и отсутствия должных систем управления не нашли широкого применения. Вновь вспомнили о системе впрыска в 60-х годах XX века. Тогда эти системы были исключительно механическими, затем им на смену пришли современные системы впрыска с электронным управлением.
Эти системы в зависимости от числа форсунок и места впрыска топлива подразделяют на одноточечные (моно- впрысковые - рис. 2.31) и многоточечные (в них каждый цилиндр имеет персональную форсунку, впрыскивающую топливо во впускной коллектор в непосредственной близости от впускного клапана конкретного цилиндра, - рис. 2.32). Моновпрыск направляет подготовленную смесь во впускной коллектор. В этом он схож с карбюратором. На современных транспортных средствах работой инжекторов и моновпрысков управляют электронные процессоры. Они контролируют работу каждого цилиндра. Рассмотрим устройство простейшей инжекторной системы (см. рис. 2.24, 2.31 и 2.32). Она включает в себя следующие элементы:
- электрический бензонасос;
- регулятор давления;
- электронный блок управления;
- датчики угла поворота дроссельной заслонки, температуры охлаждающей жидкости и числа оборотов коленчатого вала;
- инжектор.
Во впрысковой системе питания используют двухступенчатый неразборный электрический бензонасос ро-
торно-роликового типа. Его устанавливают в топливном баке. Такой насос подает топливо под давлением свыше 280 кПа.
Регулятор давления поддерживает необходимую разницу давлений между топливом в форсунках и воздухом во впускном коллекторе. Он выполнен в виде мембранного клапана, установленного на топливной рампе. При повышении нагрузки двигателя этот регулятор увеличивает давление топлива, подаваемого к форсункам, при снижении - уменьшает, возвращая избыток топлива по сливной магистрали в бак.
Электронный блок управления (компьютер) - мозг системы впрыска топлива. Он обрабатывает информа
цию от датчиков и управляет всеми элементами системы питания. В него непрерывно поступают сведения о напряжении в бортовой сети автомобиля, его скорости, положении и количестве оборотов коленчатого вала, положении дроссельной заслонки, массовом расходе топлива, температуре охлаждающей жидкости, наличии детонации, содержании кислорода в выхлопе. Используя данную информацию, блок управляет подачей топлива, системой зажигания, регулятором холостого хода, вентилятором системы охлаждения, адсорбером системы улавливания паров бензина (в качестве адсорбера применяется активированный уголь), системой диагностики и т.д. При возникновении неполадок в системе электронный блок управления предупреждает о них водителя через контрольную лампу «СНЕСК ENGINE» (этот индикатор может быть выполнен как в виде указанной надписи, так и в виде пиктограммы с изображением двигателя). В его оперативной памяти сохраняются диагностические коды, указывающие места возникновения неисправностей. Специалисты-ремонтники с помощью определенных манипуляций или специального считывающего устройства могут получить информацию об этих кодах и быстро обнаружить и устранить неполадки.
Датчик положения дроссельной заслонки размещен на дроссельном патрубке и связан с осью дроссельной заслонки. Он представляет собой потенциометр. При нажатии на педаль «газа» поворачивается дроссельная заслонка и увеличивается напряжение на выходе датчика. Обрабатывая данную информацию, электронный блок управления корректирует подачу топлива в зависимости от угла открытия дроссельной заслонки (т.е. в зависимости от того, насколько сильно вы нажмете на педаль «газа»).
Датчик температуры охлаждающей жидкости - тер-
мистор, т.е. резистор, сопротивление которого зависит от температуры: при низкой температуре он имеет высокое сопротивление, при высокой температуре - низкое. Датчик расположен в потоке охлаждающей жидкости двигателя. Электронный блок управления измеряет падение напряжения на датчике и таким образом определяет температуру охлаждающей жидкости. Эту температуру он постоянно учитывает, управляя работой большинства систем.
Датчик положения коленчатого вала (индуктивный) координирует работу форсунок. С его помощью блок управления, получив информацию о положении коленчатого вала и соответственно о тактах двигателя, дает сигнал на срабатывание конкретной форсунки, которая в нужный момент подает распыленное топливо к соответствующему цилиндру.
Системы впрыска современных автомобилей в отличие от простейшего инжектора оборудуют целым рядом дополнительных устройств и датчиков, улучшающих работу двигателя. Это лямбда-зонд, каталитический нейтрализатор, датчики детонации и температуры впускного воздуха и т.д.
Система выпуска отработавших газов
Система выпуска служит для отвода отработавших газов от цилиндров двигателя, их охлаждения и уменьшения шума при выбросе в атмосферу.
Двигатель выбрасывает через выпускной канал цилиндра отработавшие газы в выпускной коллектор. С этого момента начинается их движение по системе выпуска. Система выпуска отработавших газов отечественного легкового автомобиля представлена на рис. 2.33.
датчик положения дроссельной заслонки |
датчик положения коленчатого вала |
замене зажигания |
СХЕМА «РАСПРЕДЕЛЕННЫЙ ВПРЫСК»
аккумуляторная + батарея
Продукты сгорания из выпускного коллектора направляются в приемную трубу резонатора (дополнительного глушителя), а потом и основного глушителя. Внутри обоих устройств установлены перегородки с большим количеством отверстий. Газы, с шумом попадающие в глушитель, вынуждены пройти длинный путь по его закоулкам. При этом звуковая волна существенно ослабевает, а газы охлаждаются. На работу системы выпуска расходуется до 4% мощности двигателя. Поэтому на спортивных автомобилях и мотоциклах такая система выпуска не применяется - на соревнованиях стоит оглушительный шум и хорошо заметен смог от отработавших газов. А вот на всех остальных механических транспортных средствах (т.е. транспортных средствах, оборудованных двигателем) наличие и исправность системы выпуска обязательны.
Все соединения в системе выпуска отработавших газов должны быть герметичны. Выпускные элементы двигателя соединяются через специальные жаростойкие прокладки, трубы глушителя вдеваются друг в друга и стягиваются хомутами.
В отличие от большинства отечественных автомобилей системы выпуска многих иномарок снабжены еще одним элементом - катализатором (каталитическим дожигателем) отработавших газов, где происходит нейтрализация вредных веществ. Поэтому такой катализатор еще называют нейтрализатором. В нем дожигаются не- сгоревшие остатки топлива и фильтруются газы перед выбросом в атмосферу. В нейтрализаторе основные токсичные компоненты отработавших газов - окись углерода СО, углеводороды СН и окись азота N0 — в результате химических реакций превращаются в нетоксичные газы. К сожалению, катализаторы могут работать только с двигателями, потребляющими высококачественный неэтилированный бензин. В противном случае они тут же засоряются и выходят из строя. Основные неисправности системы выпуска отработавших газов легко определить на слух. Повышенный шум в ее работе возникает из-за прогара или механического повреждения основного или дополнительного глушителей, труб либо разгерметизации соединений. Не следует ставить автомобиль на высокой сухой траве или в других местах, где возможен контакт выпускных труб и глушителей с легковоспламеняющимися материалами.
Система зажигания
Система зажигания используется только в бензиновых и газовых двигателях. С ее помощью топливовоздушная смесь, попавшая в цилиндры двигателя, поджигается в строго определенный момент времени. Воспламенение смеси внутри цилиндра происходит при образовании искры между электродами свечи зажигания при подаче к ней тока напряжением 18 000-20 000 В.
Рис. 2.33. Система выпуска отработавших газов: 1 - выпускной клапан; 2 - выпускной трубопровод; 3 - приемная труба глушителей; 4 - дополнительный глушитель (резонатор); 5 - основной глушитель; 6 - соединительные хомуты |
Рис. 2.34. Контактная система зажигания: 1 - генератор; 2 - выключатель (замок) зажигания; 3 - прерыватель; 4 - распределитель; 5 - свеча зажигания; 6 - катушка зажигания; 7 - аккумуляторная батарея. |
Известны три разновидности систем зажигания: контактная, бесконтактная и микропроцессорная. Контактная система на современных автомобилях не применяется. Однако ранее она была широко распространена. Отдадим ей должное, так как она верой и правдой слу
жила на протяжении многих лет, и рассмотрим ее принципиальное устройство.
Контактная система зажигания (рис. 2.34) состоит из следующих основных элементов:
- катушки зажигания;
- прерывателя-распределителя;
- вакуумного и центробежного регуляторов опережения зажигания;
- свечей зажигания;
- включателя (замка) зажигания.
Начнем с включателя зажигания. Он объединен с замком зажигания и служит сразу для нескольких целей: для включения стартера, системы зажигания, питания контрольно-измерительных приборов, подачи питания на переключатели света, на стеклоочистители и другие приборы. В данный момент нас интересует то, что с его помощью включается система зажигания и ток низкого напряжения (12 В), вырабатываемый бортовой сетью автомобиля, поступает от аккумуляторной батареи и генератора на катушку зажигания, которая преобразует его в ток высокого напряжения. Этот ток передается в трамблер (механический распределитель зажигания), подающий ток на свечи зажигания. В автомобиле имеется два источника электрического тока: аккумуляторная батарея и генератор. Эти два источника вырабатывают ток низкого напряжения (12-14 В). Но для того, чтобы между электродами свечи проскочила искра и смогла поджечь рабочую смесь, необходим ток высокого напряжения - около 20 ООО В, а в некоторых двигателях и до 70 ООО В. Для этого в системе зажигания предусмотрены две электрические цепи — низкого и высокого напряжения. Катушка зажигания (иногда ее называют бобиной) преобразует ток низкого напряжения в ток высокого напряжения. Если по обмотке провода пропустить низкое напряжение, то вокруг нее создастся магнитное поле.
В момент прерывания подачи тока в этой обмотке исчезающее магнитное поле индуцирует ток уже в обмотке высокого напряжения.
Необходимые 20 ООО В получаются за счет специального подбора количества витков в обмотках высокого и низкого напряжения.
Прерыватель тока низкого напряжения служит для размыкания контактов в цепи низкого напряжения. В этот момент во вторичной обмотке катушки зажигания индуцируется ток высокого напряжения, который затем поступает на центральный контакт распределителя. Как уже говорилось, к настоящему времени контактная система зажигания безнадежно устарела и в передовом автомобилестроении не используется. Поэтому в рамках данной книги мы не будем подробно рассматривать ее устройство и работу. Если же вы захотите ознакомиться с ней более подробно, то это не проблема. Существует много изданий, где вы найдете полное описание ее работы.
Ненамного ее опередила бесконтактная система зажигания (рис. 2.35). Она отличается от контактной системы отсутствием прерывателя (того самого, при размы-
Рис. 2.35. Бесконтактная система зажигания: 1 - датчик-распределитель зажигания; 2 - свечи зажигания; 3 - катушка зажигания; 4 - коммутатор; 5 - выключатель (замок) зажигания |
Рис. 2.36. Устройство свечи зажигания: 1 - контактный стержень; 2 - изолятор; 3 - корпус свечи зажигания; 4 - уплотнительное кольцо; 5 - теплоотводящая шайба; 6 - центральный электрод; 7 - боковой электрод |
кании контактов которого во вторичной об