Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Астрономические наблюдения по методике Козырева. Альтернативный подход




Введение

В 1976 г. на симпозиуме в Бюракане Н.А. Козырев доложил о проведенных им необычных астрономических наблюдениях, полученных при сканировании небесной сферы телескопом-рефлектором, закрытым непроницаемой для света крышкой. В фокальной плоскости телескопа находились необычные датчики – крутильные весы или маленький тонкопленочный резистор, включенный в плечо уравновешенного моста.

Козырев обнаружил, что, когда телескоп направлен на определенные участки небесной сферы, указатель крутильных весов отклоняется от нулевого положения, а сопротивление резистора меняется. В момент регистрации сигналов ориентация телескопа иногда совпадала, а чаще не совпадала с направлением на видимые в оптический телескоп астрономические объекты (звезды, звездные скопления, галактики).

Козырев утверждал, что при наблюдении окрестностей ряда астрономических объектов сигналы возникали при трех направлениях телескопа (см. рис. 1). Первое направление, с учетом поправки на преломление света в атмосфере, соответствовало оптическому изображению объекта, т.е. положению объекта в момент испускания дошедшего до наблюдателя света (сигнал «из прошлого»). Второе направление соответствовало «истинному» положению объекта, его положению в момент наблюдения (сигнал «из настоящего»).

Третье направление соответствовало положению объекта в тот момент, когда свет, излученный в точке наблюдения, дойдет до объекта (сигнал «из будущего»). Угловые расстояния между этими тремя точками равны отношению тангенциальной скорости объекта к скорости света. Обычные скорости звезд относительно Земли – десятки км/с, поэтому типичные расстояния между точками – десятки угловых секунд.

Полученные Козыревым результаты привлекаются для объяснения целого ряда непонятных явлений (см., например, [1]). В связи с этим, возникает вопрос о надежности экспериментального фундамента, на котором основаны утверждения Козырева.

Мифы и реальность

Результаты, полученные Козыревым, в первое время казались настолько неправдоподобными, что астрономы их всерьез не восприняли и более десяти лет не было ни одной попытки повторить наблюдения по методике Козырева. После того, как это было сделано несколькими независимыми группами исследователей, широко распространилось мнение о том, что проведенные проверки однозначно подтвердили возможность приема сигналов «из прошлого», «из настоящего» и «из будущего».

Что же на самом деле обнаружил Козырев и что подтвердилось или не подтвердилось при воспроизведении его исследований? Будем опираться не на слухи, а только на опубликованные работы.

1. В Трудах Бюраканского симпозиума [2; 10, с. 363-383] приведены данные о наблюдении 35 астрономических объектов. Эффект обнаружен при наблюдении 13 из них. Приведены данные, свидетельствующие о наблюдении в «истинном положении» одного объекта (звезды Процион).

2. В статье «О некоторых свойствах времени, обнаруженных астрономическими наблюдениями» [3, с. 76-84] приведены результаты наблюдений 9 звезд. В 8 случаях зарегистрировано «истинное» положение, в 9 случаях – получен сигнал «из будущего». О регистрации сигналов от звезд «из прошлого» ничего не сказано. Приведены данные о наблюдении туманности Андромеды и шарового звездного скопления М2 в «прошлом», «истинном» и «будущем» положениях.

3. В статье «Астрономическое доказательство реальности четырехмерной геометрии Минковского» [3, с. 85-93] упомянуты 6 звезд, наблюдавшихся в трех положениях.

4. Новосибирская группа исследователей, возглавляемая академиком М.М. Лаврентьевым, наблюдала по методике Козырева 4 звезды. В трех случаях зарегистрированы сигналы, соответствующие «истинному» положению звезд. О наблюдении звезд в «прошлом» и «будущем» положениях ничего не сказано [4].

5. Та же научная группа наблюдала по методике Козырева Солнце и его окрестности. Обнаружены сигналы при ориентации телескопа, отличающейся от «оптического» направления на Солнце на несколько градусов [5].

6. Киевские астрономы [6] при сканировании телескопом Козырева небесной сферы обнаружили многочисленные всплески сигнала, причем в большинстве случаев моменты появления всплесков не совпадали с моментами ориентации телескопа на звезды (при анализе учитывались звезды до 13 величины). Кроме того, окрестности ряда астрономических объектов были исследованы особенно тщательно. Проведено детальное наблюдение 13 звезд, в двух случаях на расстоянии до 10 угловых минут от оптического положения звезды зарегистрированы сигналы. Шаровые скопления наблюдались 6 раз, в 2 случаях зарегистрированы сигналы. Объект «Лебедь Х-1» (предполагают, что это – черная дыра) наблюдался 3 раза, в 2 случаях обнаружен эффект. При наблюдении туманности Андромеды (3 раза) и планетарной туманности М57 (1 раз) эффекты не обнаружены. Анализ полученных результатов не дает оснований для вывода о том, что зарегистрированные сигналы соответствуют «прошлому», «истинному» или «будущему» положениям наблюдавшихся астрономических объектов.

7. Автор этой статьи при сканировании небесной сферы обнаружил многочисленные всплески сигнала [7, 8, 23, 25-27]. Связь этих всплесков с ориентацией телескопа на звезды не установлена. При наблюдении Солнца и его окрестностей зарегистрированы сигналы при ориентации телескопа, отличающейся от «оптического» направления на Солнце.

Итак, проверочные эксперименты уверенно подтверждают появление сигналов в датчиках, помещенных в фокус нечувствительного к свету телескопа. Но связь эффектов с наблюдением астрономических объектов в их «прошлом» и «будущем» положениях пока подтверждения не нашла. Три звезды в «истинных» положениях наблюдали новосибирские исследователи.

«...Появляется всюду мгновенно»

Наблюдение трех объектов – это маловато для достоверного подтверждения существования эффекта, но уже вполне достаточно для раздумий. Будем считать, что феномен наблюдения астрономических объектов в их «истинном» положении существует, и попробуем понять, с чем он может быть связан.

Козырев считал, что результаты его астрономических наблюдений подтверждают созданную им причинную механику, в соответствии с которой «процессы в Мире происходят не только во времени, но и с помощью времени. Ход времени является активным свойством, благодаря которому время может оказывать механические воздействия на материальные системы... Время не имеет импульса, и течение времени несет только энергию. Поэтому надо думать, что воздействие времени не распространяется, а появляется всюду мгновенно, убывая обратно пропорционально расстоянию... Материя не экранирует время, его можно экранировать только физическим процессом» [9; 10, с. 313-329].

Наблюдение астрономических объектов в «истинном» положении, по мнению Козырева, доказывает возможность мгновенной передачи сигналов, допускаемой причинной механикой. Для объяснения сигналов «из прошлого» и «из будущего» Козырев привлек четырехмерную геометрию Минковского. Обсуждение причинной механики не входит в задачу этой статьи.

Отмечу только, что Козыреву не удалось в известных автору этой статьи работах убедительно обосновать связь между вышеописанными астрономическими наблюдениями и причинной механикой. Его аргументация носит весьма общий и односторонний характер (звезда в «истинном» положении – значит сигнал передается мгновенно, мгновенно – значит через активные свойства времени). Увлеченный своим детищем – причинной механикой, Козырев даже не пытался искать иные объяснения.





Поделиться с друзьями:


Дата добавления: 2016-10-23; Мы поможем в написании ваших работ!; просмотров: 458 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Чтобы получился студенческий борщ, его нужно варить также как и домашний, только без мяса и развести водой 1:10 © Неизвестно
==> читать все изречения...

2405 - | 2285 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.01 с.