Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Волновой пакет в диспергирующей среде

Электромагнитные волны в идеальном диэлектрике и в проводящей среде

4.1. Записать уравнения Максвелла проводящей среде в системе единиц Гаусса и в системе СИ. Пояснить их физический смысл. Вид материальных уравнений в однородной изотропной среде в системе единиц Гаусса и в системе СИ.

4.2. Получить уравнения Максвелла для однородных плоских волн в идеальном диэлектрике. Доказать, что эти волны в идеальном диэлектрике являются поперечными.

4.3. Для плоской электромагнитной волны вывести инварианты одномерных уравнений Максвелла в идеальном диэлектрике. Получить связь векторов и в волне, бегущей вдоль .

4.4. Получить выражение для объемной плотности энергии W и вектора плотности потока энергии электромагнитного излучения. Доказать, что полная энергия в объеме идеальной среды сохраняется. Найти связь W и в бегущей волне.

4.5. В однородной изотропной проводящей среде вывести волновое уравнение для вектора и получить дисперсионное соотношение для плоской гармонической волны. Выписать первые три члена разложения при . Найти коэффициент затухания и фазовую скорость.

4.6. Для плоских электромагнитных волн в проводящей среде вывести формулы для действительной и мнимой частей волнового числа . Рассмотреть случаи малых и больших частот. Нарисовать графики и .

4.7. При распространении плоской электромагнитной волны в проводящей среде отношение (3,4,5). Чему равен тангенс угла потерь ?

4.8. В проводящей среде тангенс угла потерь а) , б) , в) , г) . Чему равно отношение ?

4.9. Доказать, что в проводящей среде энергия электромагнитного излучения уменьшается со временем.

4.10.Радиоволна с частотой f=0.3 МГц распространяется в земле (, , ). Определить фазовую скорость и длину волны в земле. Во сколько раз уменьшится напряженность электрического поля на расстоянии 10 м?

4.11. Электрические и магнитные свойства воды в океане характеризуются параметрами , , . Определить область частот, в которой вода в океане ведёт себя как проводник () и как диэлектрик (). Во сколько раз убывает интенсивность волны на глубине 10 м для частот f= Гц и f= Гц?

 

Волновой пакет в диспергирующей среде.

5.1. В диспергирующей однородной и изотропной среде записать волновое уравнение и получить его общее решение для волнового пакета с медленно меняющейся амплитудой .

5.2. Физический смысл фазовой и групповой скорости, их связь в диспергирующей среде. Что такое нормальная и аномальная дисперсии?

5.3. Найти соотношение фазовой и групповой скорости для электромагнитного сигнала в плазме, если показатель преломления равен , где - плазменная частота.

5.4. Найти отношение и волнового пакета в диспергирующей среде с законом дисперсии а) (). Какую размерность имеет коэффициент ? б) (). Какую размерность имеет коэффициент ? в) ().Какую размерность имеет коэффициент ?

5.5. На входе однородной изотропной диспергирующей среды задан волновой пакет с гауссовой огибающей. Найти полуширину его частотного спектра по уровню а) , б) , если начальная длительность волнового пакета .


5.6. В 1-ом приближении теории дисперсии написать дисперсионное соотношение, уравнение для огибающей волнового пакета и его общее решение. Каковы условия применимости 1-ого приближения теории дисперсии? Показать, что в 1-ом приближении теории дисперсии энергия волнового пакета распространяется с групповой скоростью.

5.7. Во 2-ом приближении теории дисперсии написать дисперсионное соотношение, уравнение для огибающей волнового пакета и его общее решение. Каков физический смысл коэффициента диффузии?

5.8. Для волнового пакета с гауссовой огибающей на входе диспергирующей среды получить решение уравнения для огибающей во 2-ом приближении теории дисперсии. Каковы законы изменения с расстоянием длительности и амплитуды в центре волнового пакета?

5.9. Найти во 2-ом приближении теории дисперсии закон изменения с расстоянием амплитуды в центре волнового пакета, если на входе диспергирующей среды задан волновой пакет вида:

а) ; б) ; в) .

5.10. Длительность волнового пакета, имеющего гауссову огибающую, увеличивается в 4 раза на длине 10 см. Найти коэффициент дисперсии второго порядка, если начальная длительность волнового пакета .

5.11. Найти минимальный временной интервал между центрами двух волновых пакетов с гауссовой огибающей на входе диспергирующей среды с законом дисперсии , при котором в точке приема волновые пакеты не перекроются. Прием ведется на расстоянии L=1000 км, несущая частота =3МГц, плазменная частота =2.7 МГц.

5.12. На входе диспергирующей среды задан волновой пакет с гауссовой огибающей и квадратичной модуляцией фазы: . Найти расстояние, на котором волновой пакет испытывает компрессию.



<== предыдущая лекция | следующая лекция ==>
Многомерные случайные величины | Управление вычислительным процессом
Поделиться с друзьями:


Дата добавления: 2016-10-06; Мы поможем в написании ваших работ!; просмотров: 653 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Велико ли, мало ли дело, его надо делать. © Неизвестно
==> читать все изречения...

2490 - | 2156 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.011 с.