Лекции.Орг
 

Категории:


Классификация электровозов: Свердловский учебный центр профессиональных квалификаций...


Электрогитара Fender: Эти статьи описывают создание цельнокорпусной, частично-полой и полой электрогитар...


Построение спирали Архимеда: Спираль Архимеда- плоская кривая линия, которую описывает точка, движущаяся равномерно вращающемуся радиусу...

Электропроводность металлов



Теортические сведения

Виды проводников

Проводниковыми материалами называются такие материалы, основным свойством которых является высокая электропроводность.

Проводники электрического тока могут быть твердыми телами, жидкостями, а при выполнении ряда условий - газами.

Твердые проводники – это металлы и некоторые модификации углерода. По величине удельного сопротивления ρ металлические проводники делятся на следующие группы:

– сверхпроводники;

– криопроводники;

– металлы и сплавы с высокой удельной проводимостью s;

– металлы и сплавы со средним значением ρ;

– металлы и сплавы с высоким значением ρ.

Среди наиболее известных проводников находятся такие металлы, как Cu, Ag, Au, Pt, щелочные, щелочноземельные и ферромагнитные металлы. К сверхпроводникам относятся интерметаллические соединения Nb3X или V3X, где X – переходный металл; тройные сверхпроводники (называемые фазами Шевреля с общей формулой RMO6Z8, где R – катион, Z – атом халькогенида).

Криопроводники при более высоких температурах имеют ρ на два порядка выше, чем сверхпроводники. Например, при температуре жидкого азота Al, Be – криопроводники.

 

Электропроводность металлов

Металлические проводники – это основной тип проводниковых материалов, применяемых в микроэлектронике. В классической электронной теории металлов – проводников I рода – электронный газ представлен свободными электронами.

При учете лишь однократной ионизации выражение для концентрации свободных электронов n равно концентрации атомов:

(1.1)

 

 

где λ – плотность металла;

ma – атомная масса;

NА=6,022045(31)⋅1023моль-1– число Авогадро, то есть число структурных элементов в единице количества вещества (в одном моле).

К электронному газу применимы понятия и законы статистики обычных газов. При рассмотрении хаотического и направленного под действием силы электрического поля движения электронов было получено выражение для законов Ома и Джоуля – Ленца.

Плотность тока j в проводнике при средней скорости теплового движения электронов и средней длине свободного пробега lср пропорциональна напряженности поля E:

 

(1.2)

 

 

где m0 – масса электрона.

Формула (1.2) – аналитическое выражение закона Ома при условии, что учтено движение одного электрона, а выводы распространены на все свободные электроны.

Целесообразно учесть действие поля на всю совокупность электронов, когда суммарный импульс изменяется как при действии поля, так и в результате соударений с узлами кристаллической решетки. Тогда средняя дрейфовая скорость электронов возрастает вдвое. С учетом этого выражение для удельной проводимости примет вид

(1.3)

 

 

Экспериментально установлено, что теплопроводность металлов пропорциональна их электропроводности. Представления о свободных электронах приводят к закону Видемана – Франца (1853г.), так как электрон в металле не только переносит электрический заряд, а также выравнивает в нем температуру за счет электронной теплопроводности. Отношение удельной теплопроводности λт к удельной проводимости s при комнатной и более высоких температурах T является постоянной величиной:

где L0 -число Лоренца.

Отклонения экспериментальных значений L0 от теоретических объясняются неупругими столкновениями электронов проводимости с колебаниями решетки.

 

Гипотеза об электронном газе в металлах подтверждается рядом опытов:

1 При длительном протекании тока через цепь, состоящую из однородных металлических проводников, отсутствует проникновение атомов одного металла в другой.

2 При нагревании металлов до высоких температур скорость теплового движения свободных электронов растет, они даже покидают металл, преодолев силы поверхностного потенциального барьера.

3 В момент остановки быстро двигавшегося проводника происходит смещение электронного газа по закону инерции в направлении движения. Появляется разность потенциалов на концах заторможенного проводника.

4 Вследствие искривления траектории электронов в металлической пластине, помещенной в поперечное магнитное поле, появляется поперечная ЭДС и изменяется сопротивление проводника.

Имеются также и противоречащие факторы:

– расхождения теоретической и экспериментальной зависимостей ρ(Т);

– наблюдаемое значение теплоемкости металлов ниже.

Количественной мерой электропроводности служит удельная проводимость s. На практике удобно пользоваться величиной, обратной удельной проводимости, - удельным сопротивлением.

Согласно известному правилу Маттисена удельное сопротивление объемного проводникового материала выражается следующим соотношением

 

r = r1+r2+r3, (1.4)

где r1- удельное сопротивление, обусловленное рассеянием электронов на фононных колебаниях кристаллической решетки; r2-удельное сопротивление, обусловленное рассеянием электронов на примесях;r3 - удельное сопротивление, обусловленное рассеянием электронов на деформациях.

В тонких проводниковых пленках, в которых толщина сравнима с длиной свободного пробега носителей, удельное сопротивление обычно в 1,2 - 1,5 раза больше, чем для объемного материала.

Удельное сопротивление тонких проводниковых пленок определяется следующим выражением

rпленки = r1+r2+r3+r4+r5, (1.5)

где r1+r2+r3 - удельные сопротивления тонкой пленки, характерные для массивного проводникового материала;

r4 - удельное сопротивление, обусловленное рассеянием электронов на свободных поверхностях пленки;

r5 - удельное сопротивление, характерное только для резистивных пленок, обусловленное рассеянием электронов на границах микрокристаллитов пленки, разделенных собственными оксидными слоями, и специально вводимой диэлектрической фазой.





Дата добавления: 2016-10-22; просмотров: 839 | Нарушение авторских прав


Рекомендуемый контект:


Похожая информация:

  1. A. Техника безопасности при сварке цветных металлов
  2. IV. Славы драгоценных металлов (лигатура)
  3. Анодный процесс при коррозии металлов -
  4. Взаимодействие металлов с водными растворами щелочей
  5. Взаимодействие металлов с кислотами, водой
  6. Взаимодействие металлов с концентрированной азотной
  7. Виды обработки металлов давлением
  8. Вопрос В чем отличается формирование структуры сварных швов от структурообразования металлов, характерного для других металлургических процессов?
  9. Вопрос33. Поляризация и деполяризация электродов. Как влияют эти процессы на коррозию металлов? В чем состоит сущность водородной и кислородной деполяризации?
  10. Вопрос41. Способы защиты металлов от коррозии. Электрохимическая защита. Протекторная защита и катодная защита
  11. Г - металловоз с гидроманипулятором; д - автоэвакуаторы
  12. Легирование металлов и сплавов


Поиск на сайте:


© 2015-2019 lektsii.org - Контакты - Последнее добавление

Ген: 0.004 с.