Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Формула для расчета коэффициентов регрессии в матричном виде




Фиктивные переменные.

В большинстве случаев независимые переменные в регрессионных моделях имеют непрерывные области изменения. Однако теория не накладывает никаких ограничений на характер коэф-тов регрессии, в частности, некоторые переменные могут принимать всего два значения или в более общей ситуации – множество дискретных значений. Необходимость рассмотрения таких переменных возникает в случаях, когда необходимо оценить какой либо качественный признак, т. е. Когда факторы, вводимые в ур-ие регрессии являются кач-ми и не измеряются по числовой шкале. Например, при исследовании зависимости з/п от различных факторов может возникнуть вопрос, влияет ли на ее размер наличие у работника высшего образования; существует ли дискриминация в оплате труда женщин и мужчин. Одним из возможных решений данного примера является оценка отдельных регрессий для каждой категории, а затем изучение различий между ними. Другой подход состоит в оценке единой регрессии с использованием всей совокупности наблюдений и измерений степени влияния качественного фактора посредством введения фиктивной переменной. Она является равноправной переменной наряду с др-ми переменными моделями. Ее фиктивность заключается лишь в том, что она количеств-м образом описывает качественный признак. Второй подход обладает след. преимуществами: 1) это простой способ проверки, является ли воздействие качественного признака значимым; 2) при условии выполнения опред. предположений регрессионной оценки оказывается более эффективным.

 

Мультиколлинеарность

Слово «коллинеарность» описывает линейную связь между двумя независимыми переменными, тогда как «мультиколлинеарность» – между более чем двумя переменными. На практике всегда используется один термин. Термин «мультиколлинеарность» введен Рагнаром Фришем.

Виды мультиколлинеарности

1. Строгая (perfect) мультиколлинеарность – наличие линейной функциональной связи между независимыми переменными (иногда также и зависимой).

2. Нестрогая (imperfect) мультиколлинеарность – наличие сильной линейной корреляционной связи между независимыми переменными (иногда также и зависимой).

Формула для расчета коэффициентов регрессии в матричном виде.

 

Представим данные наблюдений и коэффициенты модели в матричной форме.

Здесь Y — n-мерный вектор-столбец наблюдений зависимой переменной; X — матрица размерности n х (m +1), в которой i-я строка i = 1, 2,..., n представляет i-е наблюдение вектора значений независимых переменных X1, X2,...,Xm, единица соответствует переменной при свободном члене b0; B — вектор-столбец размерности (m + 1) параметров уравнения множественной регрессии; e — вектор-столбец размерности n отклонений выборочных значений yi зависимой переменной от значений yi, получаемых по уравнению регрессии:

В матричном виде соотношение примет вид:

Согласно методу наименьших квадратов:

где eT = (e1, e2,..., en), т. е. надстрочный значок T означает транспонированную матрицу.

Можно показать, что предыдущее условие выполняется, если вектор-столбец коэффициентов B найти по формуле:

Здесь XT — матрица, транспонированная к матрице X,

(XTX)-1 — матрица, обратная к (XTX). Соотношение справедливо для уравнений регрессии с произвольным количеством m объясняющих переменных

 





Поделиться с друзьями:


Дата добавления: 2016-10-22; Мы поможем в написании ваших работ!; просмотров: 1036 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Так просто быть добрым - нужно только представить себя на месте другого человека прежде, чем начать его судить. © Марлен Дитрих
==> читать все изречения...

2463 - | 2219 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.006 с.