Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Похідні та диференціали вищих порядків




Нехай функція диференційовна на проміжку X, а - її похідна, яка також є функцією відносно x. Від цієї функції знову можна шукати похідну за умови, що вона існує на заданому проміжку. Похідна від похідної називається похідною другого порядку (second-order derivative) функції і позначається одним із символів:

Так у фізиці, якщо - закон, за яким змінюється пройдений шлях при прямолінійному русі точки, то є прискоренням (acceleration) цієї точки в момент часу t. Аналогічно і т. д.

Взагалі похідною n-го порядку від функції називається похідна від похідної -го порядку і позначається , або , або

Зауваження. При , похідну n -го порядку позначають відповідно ; при позначають: або .

Формула Лейбніца. Якщо функції , мають похідні до n -го порядку включно, то для обчислення похідної n -го порядку від добутку цих функцій використовують формулу Лейбніца:

.

Диференціалом другого порядку (second differential)функції в точці x називається диференціал від її диференціала першого порядку (за умови, що повторний приріст незалежної змінної x збігається з попереднім ) і позначається ;

За означенням маємо

позначають . Таким чином .

Аналогічно, диференціалом n-го порядку (позначається ), n =2,3,... називається диференціал від диференціала порядку за умови, що в диференціалах весь час беруться одні й ті самі прирости незалежної змінної x. Тобто . При цьому справедлива формула:

15 Теорема Ферма.
Если функция у = f (х), определенная в интервале (а; b), достигает в некоторой точке с этого интервала наибольшего (или наименьшего) значения и существует производная f ′(с), то f ′(с) = 0. Геометрический смысл этой теоремы состоит в том, что касательная к графику функции у = f (х) в точке с абсциссой с параллельна оси абсцисс


Теорема Ролля. Если функция у = f (х), непрерывная на отрезке [ а; b ] и дифференцируемая в интервале (а; b), принимает на концах этого отрезка равные значения f (a) = f (b), то в интервале (а; b) существует такая точка с, что f ′(с) = 0.
Геометрически эта теорема означает следующее: если крайние ординаты кривой у = f (х) равны, то на кривой найдется точка, в которой касательная параллельна оси абсцисс (рис.).

Теорема Лагранжа. Если функция у = f (х) непрерывна на отрезке [ а; b ] и дифференцируема в интервале (а; b), то в этом интервале найдется такая точка с, что Эта теорема имеет простой геометрический смысл (рис.): на графике функции у = f (х) между точками А и В найдется такая внутренняя точка С, что касательная к графику в точке С параллельна хорде АВ.

Следствие. Если f ′(x) = 0 в интервале (а; b), то в этом интервале функция f (х) постоянна.

Теорема Коши. Если функции f (х) и g (х): 1) непрерывны на отрезке [ а; b ];

2) дифференцируемы в интервале (а; b);

3) g' (x) ≠ 0 в этом интервале,

то в интервале (а; b) существует такая точка с, что имеет место равенство

16 формула Тейлора

 

изображающая функцию f (x), имеющую n -ю производную f (n)(a) в точке х = а, в виде суммы многочлена степени n, расположенного по степеням ха, и остаточного члена Rn (x), являющегося в окрестности точки а бесконечно малой более высокого порядка, чем (x—a) n [то есть Rn (x) = an (x)(xa) n, где an (x) → 0 при ха ]. Если в интервале между а и х существует (n + 1)-я производная, то Rn (x)можно представить в видах:

,

где ξ и ξ1 — какие-то точки указанного интервала (остаточный член Т. ф. в формах Лагранжа и соответственно Коши). График многочлена, входящего в Т. ф.. имеет в точке а Соприкосновение не ниже n-го порядка с графиком функции f (x). Т. ф. применяют для исследования функций и для приближённых вычислений.

Формулой Маклорена называется формула Тейлора при а = 0:

Правило Бернулі-Лопіталя

Правило говорить, що якщо функції і задовольняють такі умови:

  1. або ;
  2. ;
  3. в проколотому околі ;
  4. Якщо і — диференційовані в проколотому околі ,

то існує . При цьому теорема вірна і для інших баз





Поделиться с друзьями:


Дата добавления: 2016-10-07; Мы поможем в написании ваших работ!; просмотров: 445 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Так просто быть добрым - нужно только представить себя на месте другого человека прежде, чем начать его судить. © Марлен Дитрих
==> читать все изречения...

2463 - | 2219 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.008 с.