Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Межпредметные и внутрипредметные связи. Задания для самоподготовки:




 

 

Задания для самоподготовки:

 

1 – Представить схемы переходов частиц с одного энергетического уровня на другой при спонтанном и вынужденном излучении, а также при резонансном поглощении.

2 – Указать условия, необходимые для получения активной среды или среды с инверсной населенностью уровней.

 

3 – Представить трехуровневую энергетическую диаграмму, отражающую принцип действия гелий-неонового лазера.

4 – Показать на фрагменте дифракционной картины, создаваемой дифракционной решеткой, положения нулевого и m-го порядков максимумов. Вычислить средние расстояния для максимумов m порядков и длину волны лазерного излучения на представленной дифракционной картине 1.

5 – Получить четкую дифракционную картину на круглом диске (эритроците) и определить радиус 1-го минимума на дифракционной картине 2. Вычислить средний диаметр эритроцита.

       
 
   
2-й max
 

 


 
 

 

 


Дифракционная картина 1


       
 
1-й min
 
0-й max
 


2-й min
3-й min
1-й max
2-й max
3-й max

Дифракционная картина 2

Литература, рекомендуемая для самоподготовки:

Основная:

1 – «Медицинская и биологическая физика» 7-е изд., Ремизов А.Н. и др. Издательство Дрофа. 2007 (можно более ранние издания).

2 – «Биофизика» - Антонов В. Ф., и другие. Издательство: Владос. 2006

 

3 – «К раткий курс медицинской и биологической физики с элементами реабилитации: Лекции и семинары.» - Фёдорова В.Н. Степанова Л.А. Издательство: Физматлит. 2005

 

4 – «Медицинская биофизика» Самойлов В.О.СПб:Издательство: СпецЛит Учебник для вузов - 2004.

Интернет – Электронная библиотека http://www.sma.kz/.about/structure/lib2/lib/

Дополнительная:

Биофизика. Учебник для студентов фармацевтических и медицинских Вузов; Рыбари; 2004 г.

2 - Биофизика Рубин А.Б. 1999. http://www.library.biophys.msu.ru/rubin/

ВОПРОСЫ ДЛЯ САМОПОДГОТОВКИ

- по базисным знаниям:

· Волновые и корпускулярные свойства света. Фотон.

· Дисперсия света. Спектр. Цвета спектра и их длины волн.

· Интерференция света. Кольца Ньютона. Когерентные волны. Монохроматическая волна.

· Дифракция света. Дифракционная решетка. Период дифракционной решетки.

- по данной теме:

· Явления вынужденного излучения квантовых систем. Два типа квантовых переходов. Энергия фотона. Спонтанное и индуцированное излучение.

· Лазер. Принцип действия гелий-неонового лазера. Свойства лазеров, на которых основано их применение.

· Применение лазеров в медицине.

 

КРАТКАЯ ТЕОРИЯ

Дифракция света

Дифракцией света называют явление отклонения света от прямолинейного распространения в среде с резкими неоднородностями, т.е. световые волны огибают препятствия, но при условии, что размеры последних сравнимы с длиной световой волны. Для красного света длина волны составляет λкр≈8∙10-7м, а для фиолетового - λф ≈4∙10-7м. Явление дифракции наблюдается на расстояниях l от препятствия , где D – линейный размер препятствия, λ - длина волны. Итак, для наблюдения явления дифракции необходимо выполнять определенные требования к размерам препятствий, расстояниям от препятствия до источника света, а также к мощности источника света. На рис. 1 приведены фотографии дифракционных картин от различных препятствий: а) тонкой проволочки, б) круглого отверстия, в) круглого экрана.

 

 

 
 
Рис. 1  

 


Для решения дифракционных задач – отыскания распределения на экране интенсивностей световой волны, распространяющейся в среде с препятствиями, - применяются приближенные методы, основанные на принципах Гюйгенса и Гюйгенса-Френеля.

Принцип Гюйгенса: каждая точка S1, S2,…,Sn фронта волны AB (рис. 2) является источником новых, вторичных волн. Новое положение фронта волны A1B1 через время представляет собой огибающую поверхность вторичных волн.

Принцип Гюйгенса-Френеля: все вторичные источники S1, S2,…,Sn, расположенные на поверхности волны, когерентны между собой, т.е. имеют одинаковую длину волны и постоянную разность фаз. Амплитуда и фаза волны в любой точке М пространства является результатом интерференции волн, излучаемых вторичными источниками (рис. 3).

 

 

       
 
Рис. 2  
 
Рис. 3  
 


Прямолинейное распространение луча SM (рис. 3), испущенного источником S в однородной среде, объясняется принципом Гюйгенса-Френеля. Все вторичные волны, излучаемые вторичными источниками, находящимися на поверхности фронта волны АВ, гасятся в результате интерференции, кроме волн от источников, расположенных на малом участке сегмента ab, перпендикулярно к SM. Свет распространяется вдоль узкого конуса с очень малым основанием, т.е. практически прямолинейно.

Дифракционная решетка.

На явлении дифракции основано устройство замечательного оптического прибора – дифракционной решетки. Дифракционной решеткой в оптике называется совокупность большого числа препятствий и отверстий, сосредоточенных в ограниченном пространстве, на которых происходит дифракция света.

Простейшей дифракционной решеткой является система из N одинаковых параллельных щелей в плоском непрозрачном экране. Хорошая решетка изготавливается с помощью специальной делительной машины, наносящей на специальной пластинке параллельные штрихи. Число штрихов доходит до нескольких тысяч на 1мм; общее число штрихов превышает 100000 (рис. 4).

Рис.5  

 
 
Рис. 4  

 


Если ширина прозрачных промежутков (или отражающих полос) b, а ширина непрозрачных промежутков (или рассеивающих свет полос) a, то величина d=b+a называется постоянной (периодом) дифракционной решетки (рис. 5).

По принципу Гюйгенса-Френеля каждый прозрачный промежуток (или щель) является источником когерентных вторичных волн, способных интерферировать друг с другом. Если на дифракционную решетку перпендикулярно к ней падает пучок параллельных лучей света, то под углом дифракции φ на экране Э (рис. 5), расположенном в фокальной плоскости линзы, будет наблюдаться система дифракционных максимумов и минимумов, полученная в результате интерференции света от различных щелей.

Найдем условие, при котором идущие от щелей волны усиливают друг друга. Рассмотрим для этого волны, распространяющиеся в направлении, определяемом углом φ (рис. 5). Разность хода между волнами от краев соседних щелей равна длине отрезка DK=d∙sinφ. Если на этом отрезке укладывается целое число длин волн, то волны от всех щелей, складываясь, будут усиливать друг друга.

Главные максимумы при дифракции на решетке наблюдаются под углом φ, удовлетворяющими условию d∙sinφ=mλ, где m=0,1,2,3… называется порядком главного максимума. Величина δ=DK=d∙sinφ является оптической разностью хода между сходственными лучами BM и DN, идущими от соседних щелей.

Главные минимумы на дифракционной решетке наблюдаются под такими углами φ дифракции, для которых свет от разных частей каждой щели полностью гасится в результате интерференции. Условие главных максимумов совпадает с условием ослабления на одной щели d∙sinφ=nλ (n=1,2,3…).

Дифракционная решетка является одним из простейших достаточно точных устройств для измерения длин волн. Если период решетки известен, то определение длины волны сводится к измерению угла φ, соответствующего направлению на максимум.

Чтобы наблюдать явления, обусловленные волновой природой света, в частности, дифракцию необходимо использовать излучение, обладающее высокой когерентностью и монохроматичностью, т.е. лазерное излучение. Лазер является источником плоской электромагнитной волны.

 





Поделиться с друзьями:


Дата добавления: 2016-10-06; Мы поможем в написании ваших работ!; просмотров: 439 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

В моем словаре нет слова «невозможно». © Наполеон Бонапарт
==> читать все изречения...

2173 - | 2117 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.01 с.