Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Кинематика поступательного и вращательного движения материальной точки. 1.По гладкой наклонной доске пустили катиться снизу вверх маленький брусок




1. По гладкой наклонной доске пустили катиться снизу вверх маленький брусок. На расстоянии l = 30 см брусок побывал дважды: через t 1 = 1 с и через t 2 = 2 c после начала движения. Определить начальную скорость бруска υ 0.

2. С башни брошен камень в горизонтальном направлении с начальной скоростью 40 м/с. Какова скорость камня через 3 с после начала движения? Какой угол образует вектор скорости камня с плоскостью горизонта в этот момент.

3. На толкание ядра, брошенного с высоты h = 1,8 м под углом α = 30º к горизонту, затрачена работа А = 216 Дж. Через какое время t и на каком расстоянии s от места бросания ядро упадёт на землю? Масса ядра m = 2 кг.

4. Тело брошено горизонтально со скоростью v 0= 15 м/с. Пренебрегая сопротивлением воздуха, определить радиус кривизны траектории тела через t = 2 с после начала движения.

5. Снаряд вылетел со скоростью 30 м/с под углом 60° к горизонту. Чему равен радиус кривизны траектории снаряда через 2 с после выстрела?

6. Мяч брошен со скоростью 10 м/с под углом 45° к горизонту. Найти радиус кривизны траектории мяча через 1 с после броска.

7. Мяч брошен со скоростью υ0 под углом α к горизонту. Найти υ0 и α, если максимальная высота подъема мяча h = 3 м, радиус кривизны траектории мяча в этой точке R = 3 м.

8. Под каким углом к горизонту надо бросить тело, чтобы центр кривизны его траектории в вершине находился на земле?

9. Диск радиусом 10 см, находившийся в состоянии покоя, начал вращаться с постоянным угловым ускорением 0,5 рад/с2. Найти касательное, нормальное и полное ускорение точек на окружности диска в конце второй секунды после начала вращения.

10. Диск радиусом R =10 см вращается так, что зависимость линейной скорости точек, лежащих на ободе диска, от времени задается уравнением υ= At + Bt 2 (А =0,3 м/с2, В = 0,1 м/с3). Определить момент времени, для которого вектор полного ускорения образует с радиусом колеса угол φ=40.

11. Материальная точка начинает движение по окружности радиуса 12,5 см с постоянным тангенциальным ускорением 0,5 см/с2. Определить момент времени, в который угол между векторами ускорения и скорости равен 45° и путь, пройденный точкой до этого момента.

12. Материальная точка начинает двигаться по окружности радиусом r = 12,5 см с постоянным тангенциальным ускорением aτ = 0,5 см/с2. Определить: 1) момент времени, когда вектор ускорения образует с вектором скорости угол α = 45°; 2) величину перемещения к этому моменту.

13. Материальная точка движется в плоскости по закону: , где и – положительные постоянные. Найти момент времени, когда угол между скоростью и ускорением будет равен 45°.

14. Зависимость угла поворота от времени для точки, лежащей на ободе колеса радиуса R, задается уравнением , где A =1 рад/c3, B =0,5 рад/c2, C =2 рад/c, D =1 рад. К концу третьей секунды эта точка получила нормальное ускорение, равное 153 м/с2. Определить радиус колеса.

15. Точка движется по окружности радиусом R = 2 см. Зависимость пути от времени дается уравнением S = At 3, где А =0,1 см/с3. Найти нормальное (аn) и тангенциальное (а τ) ускорения точки в момент, когда линейная скорость точки υ = 0,3 м/с.

16. Точка движется по окружности радиусом R = 10 см с постоянным тангенциальным ускорением а τ. Найти тангенциальное ускорение а τ точки, если известно, что к концу пятого оборота после начала движения линейная скорость точки υ = 79,2 см/с.

17. Автомобиль движется по закруглению шоссе, имеющему радиус кривизны R = 10 м. Уравнение движения автомобиля (м/с2). ( -означает криволинейную координату, отсчитанную от некоторой начальной точки на окружности). Найти полное ускорение a в момент времени t = 5 с.

18. Точкадвижется по окружности радиусом R = 2 м согласно уравнению S = At 3, где А = 2 м/с3. В какой момент времени t нормальное ускорение аn будет равно тангенциальному аτ? Определить полное ускорение в этот момент времени. (S – путь, проходимый телом).





Поделиться с друзьями:


Дата добавления: 2016-10-06; Мы поможем в написании ваших работ!; просмотров: 926 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Лучшая месть – огромный успех. © Фрэнк Синатра
==> читать все изречения...

2230 - | 2117 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.011 с.