Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Примеры решения задач по системам эконометрических уравнений

 

Задача 1. Имеется следующая структурная модель:

Соответствующая ей приведенная форма модели имеет вид:

Определить, если это возможно, неизвестные параметры структурной модели.

 

Решение. Сначала определим идентифицируемость структурной модели. Ограничимся для простоты применением счетного правила. Приведем кратко информацию об этом правиле.

Обозначим Н – число эндогенных переменных в i - ом уравнении системы, D – число экзогенных переменных, которые содержатся в системе, но не входят в данное уравнение. Тогда условие идентифицируемости уравнения может быть записано в виде следующего счетного правила:

D+1 = Н – уравнение идентифицируемо;

D+1 < Н – уравнение неидентифицируемо;

D+1 > Н – уравнение сверхидентифицируемо.

Первое и третье уравнения структурной модели имеют H = 2, D = 1. В первом уравнении две эндогенные переменные – y1, y2, в третьем тоже две – y2, y3; в обоих уравнениях не хватает по одной экзогенной переменной: в первом отсутствует х3, в третьем – х2. В этих уравнениях выполняется равенство D + 1 = H, и они идентифицируемы. Во втором уравнении присутствуют все три эндогенные переменные (H=3), а отсутствуют две экзогенные – х1 и х3 (D=2). Здесь также выполняется равенство D + 1 = H, и второе уравнение также идентифицируемо. Поскольку все три уравнения структурной модели идентифицируемы, система также идентифицируема.

Для идентифицируемых систем методом оценки структурных параметров является косвенный МНК. Он заключается в том, что уравнения приведенной формы модели (ПФМ), полученные обычным МНК как уравнения множественной регрессии, с помощью алгебраических преобразований превращаются в уравнения структурной формы модели (СФМ). Здесь, как видим, МНК применяется только один раз – для оценки коэффициентов приведенной формы.

Начнем с построения первого уравнения СФМ. Из всех уравнений ПФМ к нему ближе всех по структуре первое уравнение: в обоих уравнениях слева стоит y1, а справа стоят х1 и х2. Однако они отличаются тем, что в первом уравнении ПФМ стоит х3, а в первом уравнении СФМ стоит y2. Поэтому, чтобы получить первое уравнение СФМ из первого уравнения ПФМ, надо в последнем заменить х3 на выражение, в котором появилась бы y2. Эту замену делаем с помощью второго уравнения ПФМ:

Подставим в первое уравнение ПФМ, получаем после элементарных преобразований:

,

или

.

Это и есть первое уравнение СФМ.

Для получения третьего уравнения СФМ действуем аналогично: в третьем уравнении ПФМ заменяем х2 так, чтобы в результате замены появилась y2. такую замену снова делаем через второе уравнение ПФМ:

.

Подставим в третье уравнение ПФМ, получаем:

,

или

.

Это и есть третье уравнение СФМ.

Для получения второго уравнения СФМ требуются более сложные преобразования. Это связано с тем, что из второго уравнения ПФМ, как наиболее похожего на второе уравнение СФМ, надо исключить сразу две переменные – х1 и х3, чтобы при этом появились y1 и y3.. Последовательное исключение здесь не годится, их надо исключать одновременно. Для этого запишем первое и третье уравнения ПФМ как систему относительно исключаемых переменных:

Решаем эту систему любым способом, например, например, методом определителей:

Подставим полученные решения во второе уравнение ПФМ, получаем второе уравнение СФМ:

или

.

Теперь можем полностью записать структурную модель:

 



<== предыдущая лекция | следующая лекция ==>
Сочинение Лашиной Елены по тексту Д.Гранина | Повторная библиографическая ссылка
Поделиться с друзьями:


Дата добавления: 2016-09-06; Мы поможем в написании ваших работ!; просмотров: 902 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Студент может не знать в двух случаях: не знал, или забыл. © Неизвестно
==> читать все изречения...

2781 - | 2343 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.012 с.