Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Магнитные моменты электронов и атомов




Глава 16 Магнитные свойства вещества

Магнитные моменты электронов и атомов

Рассматривая действие магнитного поля на проводники с током и на движущиеся заряды, мы не интересовались процесса­ми, происходящими в веществе. Свойства среды учитывались формально с помощью магнитной проницаемости m. Для того что­бы разобраться в магнитных свойствах сред и их влиянии на магнитную индук­цию, необходимо рассмотреть действие магнитного поля на атомы и молекулы вещества.

Опыт показывает, что все вещества, помещенные в магнитное поле, намагничи­ваются. Рассмотрим причину этого явле­ния с точки зрения строения атомов и мо­лекул, положив в основу гипотезу Ампера (см. § 109), согласно которой в любом теле существуют микроскопические токи,

обусловленные движением электронов в атомах и молекулах.

Для качественного объяснения маг­нитных явлений с достаточным приближе­нием можно считать, что электрон движет­ся в атоме по круговым орбитам. Элек­трон, движущийся по одной из таких орбит, эквивалентен круговому току, по­этому он обладает орбитальным магнит­ным моментом (см. (109.2)) p m = I S n, мо­дуль которого

pm=IS=evS, (131.1)

где I = ev — сила тока, v — частота вра­щения электрона по орбите, S — площадь орбиты. Если электрон движется по часо­вой стрелке (рис. 187), то ток направлен против часовой стрелки и вектор р m в со­ответствии с правилом правого винта направлен перпендикулярно плоскости орби­ты электрона.

 

 

С другой стороны, движущийся по ор­бите электрон обладает механическим мо­ментом импульса Le, модуль которого, со­гласно (19.1),

Le=mvr= 2 mvS, (131.2)

где v= 2 pvr, pr2=S. Вектор L e (его на­правление также подчиняется правилу правого винта), называется орбитальным механическим моментом электрона.

Из рис. 187 следует, что направления р m и L e противоположны, поэтому, учиты­вая выражения (131.1) и (131.2), получим

p m=-(e/2m) L e=g L e, (131.3)

где величина

g=-e/2m (131.4)

называется гиромагнитным отношением орбитальных моментов (общепринято пи­сать со знаком «-», указывающим на то, что направления моментов противополож­ны). Это отношение, определяемое уни­версальными постоянными, одинаково для любой орбиты, хотя для разных орбит значения v и r различны. Формула (131.4) выведена для круговой орбиты, но она справедлива и для эллиптических орбит. Экспериментальное определение гиро­магнитного отношения проведено в опытах Эйнштейна и де Гааза (1915), которые наблюдали поворот свободно подвешенно­го на тончайшей кварцевой нити железно­го стержня при его намагничении во внеш­нем магнитном поле (по обмотке соленои­да пропускался переменный ток с часто-

той, равной частоте крутильных колебаний стержня). При исследовании вынужден­ных крутильных колебаний стержня опре­делялось гиромагнитное отношение, кото­рое оказалось равным — (е/т). Таким об­разом, знак носителей, обусловливающих молекулярные токи, совпадал со знаком заряда электрона, а гиромагнитное отно­шение оказалось в два раза большим, чем введенная ранее величина g (см. (131.4)). Для объяснения этого результата, имев­шего большое значение для дальнейшего развития физики, было предположено, а впоследствии доказано, что кроме орби­тальных моментов (см. (131.1) и (131.2)) электрон обладает собственным механиче­ским моментом импульса L es, называемым спином. Считалось, что спин обусловлен вращением электрона вокруг своей оси, что привело к целому ряду противоречий. В настоящее время установлено, что спин является неотъемлемым свойством элек­трона, подобно его заряду и массе. Спину электрона L es соответствует собственный (спиновый) магнитный момент p ms, про­порциональный L es и направленный в про­тивоположную сторону:

p ms =gs L es. (131.5)

Величина gs называется гиромагнитным отношением спиновых моментов.

Проекция собственного магнитного момента на направление вектора В может принимать только одно из следующих двух значений:

где h=h/(2p) (h — постоянная Планка), mвмагнетон Бора, являющийся едини­цей магнитного момента электрона.

В общем случае магнитный момент электрона складывается из орбитального и спинового магнитных моментов. Магнит­ный момент атома, следовательно, склады­вается из магнитных моментов входящих в его состав электронов и магнитного мо­мента ядра (обусловлен магнитными мо­ментами входящих в ядро протонов и ней­тронов). Однако магнитные моменты ядер в тысячи раз меньше магнитных моментов электронов, поэтому ими пренебрегают.

 

 

Таким образом, общий магнитный момент атома (молекулы) р а равен векторной сум­ме магнитных моментов (орбитальных и спиновых) входящих в атом (молекулу) электронов:

p а=S р m+S р ms. (131.6)

Еще раз обратим внимание на то, что при рассмотрении магнитных моментов электронов и атомов мы пользовались классической теорией, не учитывая огра­ничений, накладываемых на движение электронов законами квантовой механики. Однако это не противоречит полученным результатам, так как для дальнейшего объяснения намагничивания веществ су­щественно лишь то, что атомы обладает магнитными моментами.

Диа- и парамагнетизм

Всякое вещество является магнетиком, т. е. оно способно под действием магнитно­го поля приобретать магнитный момент (намагничиваться). Для понимания меха­низма этого явления необходимо рассмот­реть действие магнитного поля на движу­щиеся в атоме электроны.

Ради простоты предположим, что элек­трон в атоме движется по круговой орби­те. Если орбита электрона ориентирована относительно вектора В произвольным об­разом, составляя с ним угол а (рис. 188), то можно доказать, что она приходит в та­кое движение вокруг В, при котором век­тор магнитного момента р m, сохраняя по­стоянным угол а, вращается вокруг на-

правления В с некоторой угловой скоро­стью. Такое движение в механике на­зывается прецессией. Прецессию вокруг вертикальной оси, проходящей через точку опоры, совершает, например, диск волчка при замедлении движения.

Таким образом, электронные орбиты атома под действием внешнего магнитного поля совершают прецессионное движе­ние, которое эквивалентно круговому то­ку. Так как этот микроток индуцирован внешним магнитным полем, то, согласно правилу Ленца, у атома появляется со­ставляющая магнитного поля, направлен­ная противоположно внешнему полю. На­веденные составляющие магнитных полей атомов (молекул) складываются и обра­зуют собственное магнитное поле вещест­ва, ослабляющее внешнее магнитное по­ле. Этот эффект получил название диа­магнитного эффекта, а вещества, на­магничивающиеся во внешнем магнитном поле против направления поля, называют­ся диамагнетиками.

В отсутствие внешнего магнитного по­ля диамагнетик немагнитен, поскольку в данном случае магнитные моменты элек­тронов взаимно компенсируются, и сум­марный магнитный момент атома (он ра­вен векторной сумме магнитных моментов (орбитальных и спиновых) составляющих атом электронов) равен нулю. К диамагнетикам относятся многие металлы (на­пример, Bi, Ag, Au, Cu), большинство органических соединений, смолы, углерод и т. д.

Так как диамагнитный эффект обус­ловлен действием внешнего магнитного поля на электроны атомов вещества, то диамагнетизм свойствен всем веществам. Однако наряду с диамагнитными ве­ществами существуют и парамагнитные — вещества, намагничивающиеся во внеш­нем магнитном поле по направлению поля.

У парамагнитных веществ при отсутст­вии внешнего магнитного поля магнитные моменты электронов не компенсируют друг друга, и атомы (молекулы) парамагнети­ков всегда обладают магнитным момен­том. Однако вследствие теплового движе­ния молекул их магнитные моменты ори­ентированы беспорядочно, поэтому пара-

 

 

магнитные вещества магнитными свой­ствами не обладают. При внесении пара­магнетика во внешнее магнитное поле устанавливается преимущественная ори­ентация магнитных моментов атомов по полю (полной ориентации препятствует тепловое движение атомов). Таким обра­зом, парамагнетик намагничивается, со­здавая собственное магнитное поле, со­впадающее по направлению с внешним полем и усиливающее его. Этот эффект называется парамагнитным. При ослабле­нии внешнего магнитного поля до нуля ориентация магнитных моментов вследст­вие теплового движения нарушается и па­рамагнетик размагничивается. К парамаг­нетикам относятся редкоземельные эле­менты, Pt, Al и т. д. Диамагнитный эффект наблюдается и в парамагнетиках, но он значительно слабее парамагнитного и по­этому остается незаметным.

Из рассмотрения явления парамагне­тизма следует, что его объяснение совпа­дает с объяснением ориентационной (дипольной) поляризации диэлектриков с по­лярными молекулами (см. §87), только электрический момент атомов в случае поляризации надо заменить магнитным моментом атомов в случае намагничения.

Подводя итог качественному рассмот­рению диа- и парамагнетизма, еще раз отметим, что атомы всех веществ являют­ся носителями диамагнитных свойств. Ес­ли магнитный момент атомов велик, то парамагнитные свойства преобладают над диамагнитными и вещество является па­рамагнетиком; если магнитный момент атомов мал, то преобладают диамагнит­ные свойства и вещество является диамагнетиком.





Поделиться с друзьями:


Дата добавления: 2016-09-06; Мы поможем в написании ваших работ!; просмотров: 759 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Человек, которым вам суждено стать – это только тот человек, которым вы сами решите стать. © Ральф Уолдо Эмерсон
==> читать все изречения...

2276 - | 2132 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.01 с.