Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Приложение к курсовой работе




25 вариантов контрольной работы, разработанные по данному теоретическому материалу. Один вариант контрольной работы включает в себя 10 заданий. При решении некоторых заданий рекомендуется сделать чертеж, что упростит ход действий при ее решении. Все задачи подобранны таким образом, что каждый учащийся который ознакомлен с теорией разобранной в данной курсовой работе сможет дать ответы на задания. Данный комплекс упражнений поможет выявить уровень знаний по данной теме.


 

Вариант 1.

Задание №1.

Даны координаты вершин пирамиды А1А2А3А4:

А1(2;4;3), А2(7;6;3), А3(4;9;3), А4(3;6;7). Найти:

1)Длину ребра А1А2;

2) Угол между ребрами А1А2 и А1А4;

3) Угол между ребром А1А4 и гранью А1А2А3;

4) Площадь грани А1А2А3;

5) Объем пирамиды.

Задание №2.

В прямоугольном параллелепипеде ABCDA1B1C1D1 ребро AB= 2, ребро AD= , ребро АА1=2. Точка К - середина ребра ВВ1. Найдите площадь сечения, проходящего через точки A1,D1 и К.

Задание№3.

Даны координаты вершин параллелепипеда:A(3;4;4), B(5;1;3), C(2;2;3), D(1;1;5). Найти объем параллелепипеда, его высоту, опущенную из вершины С, угол между вектором AD и гранью, в которой лежат векторы АВ и АС.

Задание №4.

Проверить, лежат ли в одной плоскости точки A(-2;-13;3), B(1;4;1), C(-1;-1;-4), D(0;0;0). Найти линейную зависимость вектора , если это возможно.

Задание №5.

Докажите, что если точки пересечения медиан треугольников ABC и А1В1С1 совпадают, то прямые АА1, ВВ1 и СС1 параллельны некоторой плоскости.

Задание №6.

Ребро куба АBCDA1B1C1D1 равно . Найдите:

а) расстояние от вершины С до плоскости BDC1;

б) угол между диагональю грани и плоскостью

Задание №7.

Найдите расстояние между скрещивающимися диагоналями АВ1 и ВС1 смежных граней АА1ВВ1 и ВВ1СС1 куба ABCDA1B1C1D1, если ребро этого куба равно 6.

Задание№8.
В кубе ABCDA1B1C1D1 со стороной a точка K является серединой стороны верхнего основания B1C1, точка L делит другую сторону C1D1 этого основания в отношении 2:1, считая от вершины С1, точка N является серединой бокового ребра АА1. Найдите площадь сечения, проходящего через точки К, L, N.

Задание№9.
В правильной треугольной призме ABCA1B1C1, все ребра которой равны 1, найдите косинус угла между прямыми AB и CA1.

Задание №10.

В правильной прямоугольной призме ABCA 1 B 1 C 1все ребра которой равны 1, найдите квадрат косинуса угла между прямыми АВ и А1С.


 

Вариант 2.

Задание №1.

Даны координаты вершин пирамиды А1А2А3А4:
A1(1;8;2),A2(5;2;6), A3(0;-1;-2), A4(-2;3;-1). Найти:

1) длину ребра А1А2;

2) угол между ребрами А1А2 и А1А4;

3) угол между ребром А1А4 и гранью А1А2А3;

4) площадь грани А1А2А3;

5) объем пирамиды.

Задание №2.

Диагональ основания правильной четырехугольной призмы равна 5 , а диагональ призмы наклонена к плоскости основания под углом 60°. Найдите площадь сечения призы, проходящего через сторону нижнего основания и противоположную сторону верхнего основания.

Задание №3.

Даны координаты вершин параллелепипеда: A(1;8;2), В(5;2;6), С(0;-1;-2), D(-2;3;-1). Найти объем параллелепипеда, его высоту, опущенную из вершины С, угол между вектором AD и гранью, в которой лежат векторы АВ и АС.

Задание №4.

Проверить, лежат ли в одной плоскости точки А(4;4;2), В(3;-3;4), С(2;3;-3), D(3;-4; 5). Найти линейную зависимость вектора , если это возможно.

Задание №5.

На двух скрещивающихся прямых отмечены по три точки: A1, A2, A3 и B1, B2, B3, причем A1A2=k⋅A1A3, В1В2= k⋅В1В3. Докажите, что прямые А1В1, А2В2, A3B3 параллельны некоторой плоскости.

Задание№6.
В кубе , ребро которого равно , найдите:

а) расстояние от вершины до плоскости

б) угол между диагональю грани и плоскостью

Задание №7.

Дан куб ABCDA1B1C1D1 с длиной ребра AB= . Найдите расстояние между скрещивающимися диагоналями AC и А1В смежных граней ABCD и AA1B1B.

Задание №8.

В правильной треугольной пирамиде SАВС с вершиной S высота равна 3, а боковые ребра равны 6. Найдите площадь сечения этой пирамиды плоскостью, проходящей через середины сторон АВ и АС параллельно прямой SА.

Задание №9.

В правильной треугольной призме ABCA1B1C1, все ребра которой равны 1, точка D середина ребра A1B1. Найдите косинус угла между прямыми AD и BC1.

Задание №10.

В правильной четырехугольной пирамиде SABCD с вершиной S высота равна диагонали основания. Точка F лежит на середине ребра SВ. Найдите квадрат тангенса между прямыми SD и АF.

 


Вариант №3.

Задание№1.

Даны координаты вершин пирамиды А1А2А3А4:

А1(4;3;4), А2(5;5;3), А3(6;8;0), А4(4;5;8). Найти:

1)Длину ребра А1А2;

2) Угол между ребрами А1А2 и А1А4;

3) Угол между ребром А1А4 и гранью А1А2А3;

4) Площадь грани А1А2А3;

5) Объем пирамиды.

Задание№2.

В основании треугольной пирамиды SABC лежит прямоугольный треугольник АВС. Середина D гипотенузы этого треугольника является основанием высоты SD данной пирамиды. Известно, что SD=2, AC=4, BC=3. Через середину высоты SD проведено сечение пирамиды плоскостью, параллельной ребрам AC и SB. Найти площадь этого сечения.

Задание№3.

Даны три вершины параллелограмма A(3;-2;4), B(4;0;3), C(7;1;5). Найти длину высоты, опущенной из вершины С (через площадь параллелограмма).

Задание №4.

Проверить, лежат ли в одной плоскости точки А(1;2;3), В(3;-2;1), С(1;1;-3), D(5;-4; 5). Найти линейную зависимость вектора , если это возможно.

Задание№5.

Дан параллелепипед ABCDA1B1C1D1 построенный на векторах . Найти высоту, проведенную из вершины A1 на грань ABCD.

Задание№6.
Ребро куба АBCDA1B1C1D1 равно . Найдите:

а) расстояние от вершины С до плоскости BDC1;

б) угол между диагональю грани и плоскостью

Задание№7.

Основание пирамиды – прямоугольник со сторонами 6 и 8. Одно из боковых рёбер перпендикулярно плоскости основания и равно 6. Найдите расстояние между этим ребром и скрещивающейся с ним диагональю основания, а также боковую поверхность пирамиды.

Задание №8.

На ребре МВ правильной пирамиды МАВС взяты точка К – середина этого ребра и точка L – середина отрезка ВК. Постройте сечение пирамиды плоскостью, проходящей через точку L параллельно прямым КА и МС. Найдите площадь полученного сечения, если сторона основания равна , а боковое ребро равно 2.

Задание №9.

В основании прямой призмы ABCDA1B1C1D1 лежит ромб ABCD со сторонойи углом А, равным 60°. На ребрах AB, B1C1 и DC взяты соответственно точки E, F и K так, что AE=EB, B1F=FC1 и DK=3KC. Найдите косинус угла между плоскостями EFK и ABC, если высота призмы равна 5.

Задание№10.

В правильной четырёхугольной призме ABCDA1B1C1D1 стороны основания равны 1, а боковые ребра равны 5. На ребре AA1 отмечена точка E так, что AE:EA1=2:3. Найдите угол между плоскостями ABC и BED1.


Вариант №4.

Задание№1.

Даны координаты вершин пирамиды А1А2А3А4:

А1(0;-1;1), А2(6;-4;-5), А3(9;-3;-1), А4(1;1;3). Найти:

1)Длину ребра А1А2;

2) Угол между ребрами А1А2 и А1А4;

3) Угол между ребром А1А4 и гранью А1А2А3;

4) Площадь грани А1А2А3;

5) Объем пирамиды.

Задание№2.

В параллелограмме ABCD даны векторы Найти площадь параллелограмма, построенного на диагоналях параллелограмма ABCD.

Задание№3.

Даны три вершины параллелограмма . Найти длину высоты, опущенной из вершины С (через площадь параллелограмма).

Задание№4.

Проверить, лежат ли в одной плоскости точки Найти линейную зависимость вектора , если это возможно.

Задание№5.

Докажите, что через данную точку можно провести плоскость, параллельную двум данным скрещивающимся прямым, и притом только одну.

Задание №6.

Ребро куба АBCDA1B1C1D1 равно . Найдите:

а) расстояние от вершины С до плоскости BDC1;

б) угол между диагональю грани и плоскостью

Задание№7.

Найдите угол между скрещивающимися медианами двух граней правильного тетраэдра.

Задание№8.

В прямоугольном параллелепипеде ABCDA1B1C1D1, AB=BC= , AA1=2 . Сечение параллелепипеда проходит через точки B и D и образует с плоскостью ABC угол =arctg . Найдите площадь сечения.

Задание№9.

Диаметр АС основания конуса равен образующей РА этого конуса. Хорда основания ВС составляет угол 600. Найдите косинус угла между прямыми АР и ВС.

Задание№10.

В правильной четырехугольной призме ABСDA1B1C1D1 стороны основания равны 2, а боковые ребра равны 5. На ребре АА1 отмечена точка Е так, что АЕ:ЕА1 = 3:2. Найдите угол между плоскостями АВС и ВЕD1.


 

Вариант№5.

Задание№1.

Даны координаты вершин пирамиды А1А2А3А4:

А1(-5;1;3), А2(1;-2;-3), А3(4;-1;1), А4(-4;3;5). Найти:

1)Длину ребра А1А2;

2) Угол между ребрами А1А2 и А1А4;

3) Угол между ребром А1А4 и гранью А1А2А3;

4) Площадь грани А1А2А3;

5) Объем пирамиды.

Задание№2.

В прямоугольном параллелепипеде ABCDA1B1C1D1 ребро AB= 8, ребро AD= , ребро АА1=4. Точка К - середина ребра ВВ1. Найдите площадь сечения, проходящего через точки A1,D1 и К.

Задание№3.

Точки A(-2;1;-3), B(3;4;4), C(5;6;0), E(4;6;t) служат вершинами параллелепипеда, объем которого равен 16. Найти t.

Задание№4.

Проверить, лежат ли в одной плоскости точки А(-5;1;3), B(1;-2;-3), C(4;-1;1), D(-4;3;5) Найти линейную зависимость вектора , если это возможно.

Задание№5.

Дан параллелепипед ABCDA1B1C1D1 построенный на векторах . Найти высоту, проведенную из вершины A1 на грань ABCD.

Задание№6.

Ребро куба АBCDA1B1C1D1 равно . Найдите:

а) расстояние от вершины С до плоскости BDC1;

б) угол между диагональю грани и плоскостью

Задание№7.

На ребре СС1 куба ABCDA1B1C1D1 отмечена точка Е так, что СЕ:ЕС1=1:2. Найдите угол между прямыми ВЕ и АС1.

Задание№8.

В правильной треугольной пирамиде МАВС с вершиной М высота равна 3, а боковые ребра равны 6. Найдите площадь сечения этой пирамиды плоскостью, проходящей через середины сторон АВ и АС параллельно прямой МА.

Задание№9.

В правильной четырехугольной пирамиде АВСMT со стороной основания АВ=4 и высотой ТО1=1. Найдите косинус угла между прямыми ОТ и MK, где О и К - середины ребер АВ и ТС.

Задание№10.

В правильной треугольной призме ABCA1B1C1, все ребра которой равны 1, точка D середина ребра A1B1. Найдите тангенс угла между прямыми AD и BC1.


 

Вариант№6.

Задание№1.

Даны координаты вершин пирамиды А1А2А3А4:

А1(-1;-3;0), А2(5;-6;-6), А3(8;-5;-2), А4(0;-1;2). Найти:

1)Длину ребра А1А2;

2) Угол между ребрами А1А2 и А1А4;

3) Угол между ребром А1А4 и гранью А1А2А3;

4) Площадь грани А1А2А3;

5) Объем пирамиды.

Задание№2.

В правильной четырёхугольной пирамиде MABCD с вершиной M стороны основания равны 6, а боковые рёбра равны 16. Найдите площадь сечения пирамиды плоскостью, проходящей через точку B и середину ребра MD параллельно прямой AC.

Задание№3.

Проверить, лежат ли точки A(2;-2;2), B(1;2;1), C(2;3;0), D(5;0;-6) в одной плоскости.

Задание№4.

Точки A(-3;2;-3), B(4;4;4), C(6;6;1), E(5;4;t) служат вершинами параллелепипеда, объем которого равен 36. Найти t.

Задание№5.

Дан параллелепипед ABCDA1B1C1D1 построенный на векторах . Найти высоту, проведенную из вершины A1 на грань ABCD.

Задание№6.

Ребро куба АBCDA1B1C1D1 равно . Найдите:

а) расстояние от вершины С до плоскости BDC1;

б) угол между диагональю грани и плоскостью

Задание№7.

В прямоугольном параллелепипеде ABCDA1B1C1D1,AB = 2, AD=AA1=1. Найдите угол между прямой АВ1 и плоскостью АВС1.

Задание №8.

Точка Е - середина ребра АА1 куба ABCDA1B1C1D1. Найдите площадь сечения куба плоскостью C1DE, если ребра куба равны .

Задание№9.

В правильной четырехугольной пирамиде ABCDS с вершиной S боковое ребро АS вдвое больше стороны основания АВ. Найдите угол между прямыми AS и BK, где К – точка пересечения медиан грани СDS.

Задание №10.

Длины всех ребер правильной четырехугольной пирамиды SABCD равны между собой. Найдите угол между прямыми SН и ВМ, если отрезок SН - высота пирамиды, точка М - середина ее бокового ребра АS.

 


Вариант 7.

Задание №1.

Даны координаты вершин пирамиды А1А2А3А4:

А1(-3;-2;-1), А2(3;-5;-7), А3(6;-4;-3), А4(-2;0;1). Найти:

1)Длину ребра А1А2;

2) Угол между ребрами А1А2 и А1А4;

3) Угол между ребром А1А4 и гранью А1А2А3;

4) Площадь грани А1А2А3;

5) Объем пирамиды.

Задание№2.

В прямоугольном параллелепипеде ABCDA1B1C1D1 ребро AB= 4, ребро AD= , ребро АА1=6. Точка К- середина ребра ВВ1. Найдите площадь сечения, проходящего через точки A1,D1 и К.

Задание№3.

Даны три вершины параллелограмма А(-3;-2;-1), B(3;-5;-7), C(6;-4;-3). Найти длину высоты, опущенной из вершины С (через площадь параллелограмма).

Задание№4.

Точки А(-3;-2;-1), В(3;-5;-7), С(6;-4;-3), D(-2;t;1) служат вершинами параллелепипеда, объем которого равен 64. Найти t.

Задание№5.

Докажите, что если точки пересечения медиан треугольников ABC и А1В1С1 совпадают, то прямые АА1, ВВ1 и СС1 параллельны некоторой плоскости.

Задание№6.

Ребро куба АBCDA1B1C1D1 равно . Найдите:

а) расстояние от вершины С до плоскости BDC1;

б) угол между диагональю грани и плоскостью

Задание№7.

На ребре СС1 куба ABCDA1B1C1D1 отмечена точка Е так, что СЕ:ЕС1=1:3. Найдите угол между прямыми ВЕ и АС1.

Задание№8.

В прямоугольном параллелепипеде ABCDA1B1C1D1 AB=BC= , AA1=2 . Сечение параллелепипеда проходит через точки B и D и образует с плоскостью ABC угол =arctg . Найдите площадь сечения.

Задание№9.

Найдите площадь сечения правильной четырехугольной пирамиды SАВСD плоскостью, параллельной апофеме SL боковой грани SВС и медиане АМ боковой грани SАВ и проходящей через середину бокового ребра SC, если сторона основания пирамиды равна 8, а расстояние от вершины пирамиды до секущей плоскости равно 40/21.

Задание№10.

В кубе ABCDA1B1C1D1 точки E и K середины ребер соответственно A1B1 и B1C1. Найдите косинус угла между прямыми AE и BK.


 

Вариант№9.

Задание №1.

Даны координаты вершин пирамиды А1А2А3А4:

А1(-1;-4;-4), А2(12;-1;-13), А3(6;-6;-7), А4(-16;1;1). Найти:

1)Длину ребра А1А2;

2) Угол между ребрами А1А2 и А1А4;

3) Угол между ребром А1А4 и гранью А1А2А3;

4) Площадь грани А1А2А3;

5) Объем пирамиды.

Задание №2.

Диагональ основания правильной четырехугольной призмы равна 3 , а диагональ призмы наклонена к плоскости основания под углом 30°. Найдите площадь сечения призы, проходящего через сторону нижнего основания и противоположную сторону верхнего основания.

Задание№3.

Даны координаты вершин параллелепипеда: A(-1;-4;-4), B(12;-1;-13), C(6;-6;-7), D(-16;1;1). Найти объем параллелепипеда, его высоту, опущенную из вершины С, угол между вектором AD и гранью, в которой лежат векторы АВ и АС.

Задание №4.

Проверить, лежат ли в одной плоскости точки A(2;6;2), B(0;1;3), C(3;0;3), D(4;4;5). Найти линейную зависимость вектора , если это возможно.

Задание №5.

Докажите, что если точки пересечения медиан треугольников ABC и А1В1С1 совпадают, то прямые АА1, ВВ1 и СС1 параллельны некоторой плоскости.

Задание №6.

Ребро куба АBCDA1B1C1D1 равно . Найдите:

а) расстояние от вершины С до плоскости BDC1;

б) угол между диагональю грани и плоскостью

 

Задание №7.

Найдите расстояние между скрещивающимися диагоналями АВ1 и ВС1 смежных граней АА1В1В и ВВ1С1С куба ABCDA1B1C1D1, если ребро этого куба равно .

Задание №8.

В кубе ABCDA1B1C1D1 со стороной a точка K является серединой стороны верхнего основания B1C1, точка L делит другую сторону C1D1 этого основания в отношении 3:2, считая от вершины С1, точка N является серединой бокового ребра АА1. Найдите площадь сечения, проходящего через точки К, L, N.

Задание№9.

В правильной треугольной призме ABCA 1 B 1 C 1, все ребра которой равны , найдите косинус угла между прямыми AB и CA 1.

Задание №10.

В правильной прямоугольной призме ABCA 1 B 1 C 1все ребра которой равны найдите квадрат косинуса угла между прямыми АВ и А1С.

 

 


 

Вариант№10.

Задание№1.

Даны координаты вершин пирамиды А1А2А3А4:

А1(2;2;5), А2(5;6;4), А3(3;2;2), А4(4;0;2). Найти:

1)Длину ребра А1А2;

2) Угол между ребрами А1А2 и А1А4;

3) Угол между ребром А1А4 и гранью А1А2А3;

4) Площадь грани А1А2А3;

5) Объем пирамиды.

Задание№2.

В основании треугольной пирамиды SABC лежит прямоугольный треугольник АВС. Середина D гипотенузы этого треугольника является основанием высоты SD данной пирамиды. Известно, что SD=4, AC=6, BC=7. Через середину высоты SD проведено сечение пирамиды плоскостью, параллельной ребрам AC и SB. Найти площадь этого сечения.

Задание№3.

Даны три вершины параллелограммаA(4;4;3), B(6;2;0), C(7;0;8). Найти длину высоты, опущенной из вершины С (через площадь параллелограмма).

Задание №4.

Проверить, лежат ли в одной плоскости точки А(2;4;5), В(5;0;1), С(2;2;-1), D(5;-4; 5). Найти линейную зависимость вектора , если это возможно.

Задание№5.

Дан параллелепипед ABCDA1B1C1D1 построенный на векторах . Найти высоту, проведенную из вершины A1 на грань ABCD.

Задание№6.

Ребро куба АBCDA1B1C1D1 равно . Найдите:

а) расстояние от вершины С до плоскости BDC1;

б) угол между диагональю грани и плоскостью

 

Задание№7.

Основание пирамиды – прямоугольник со сторонами 12 и 18. Одно из боковых рёбер перпендикулярно плоскости основания и равно 4. Найдите расстояние между этим ребром и скрещивающейся с ним диагональю основания, а также боковую поверхность пирамиды.

Задание№8.

На ребре МВ правильной пирамиды МАВС взяты точка К – середина этого ребра и точка L – середина отрезка ВК. Постройте сечение пирамиды плоскостью, проходящей через точку L параллельно прямым КА и МС. Найдите площадь полученного сечения, если сторона основания равна , а боковое ребро равно 4.

Задание №9.

В основании прямой призмы ABCDA1B1C1D1 лежит ромб ABCD со сторонойи углом А, равным 45°. На ребрах AB, B1C1 и DC взяты соответственно точки E, F и K так, что AE=EB, B1F=FC1 и DK=3KC. Найдите косинус угла между плоскостями EFK и ABC, если высота призмы равна 3.

Задание№10.

В правильной четырёхугольной призме ABCDA1B1C1D1 стороны основания равны 1, а боковые ребра равны 7. На ребре AA1 отмечена точка E так, что AE:EA1=2:1. Найдите угол между плоскостями ABC и BED1.


 

Вариант№11.

Задание№1.

Даны координаты вершин пирамиды А1А2А3А4:

А1(1;-5;2), А2(2;-4;-2), А3(6;-3;-3), А4(2;0;3). Найти:

1)Длину ребра А1А2;

2) Угол между ребрами А1А2 и А1А4;

3) Угол между ребром А1А4 и гранью А1А2А3;

4) Площадь грани А1А2А3;

5) Объем пирамиды.

Задание№2.

В параллелограмме ABCD даны векторы Найти площадь параллелограмма, построенного на диагоналях параллелограмма ABCD.

Задание№3.

Даны три вершины параллелограмма . Найти длину высоты, опущенной из вершины С (через площадь параллелограмма).

Задание№4.

Проверить, лежат ли в одной плоскости точки Найти линейную зависимость вектора , если это возможно.

Задание№5.

Докажите, что через данную точку можно провести плоскость, параллельную двум данным скрещивающимся прямым, и притом только одну.

Задание №6.

Ребро куба АBCDA1B1C1D1 равно . Найдите:

а) расстояние от вершины С до плоскости BDC1;

б) угол между диагональю грани и плоскостью

Задание№7.

Найдите угол между скрещивающимися медианами двух граней правильного тетраэдра.

Задание№8.

В прямоугольном параллелепипеде ABCDA1B1C1D1 AB=BC= , AA1=2 . Сечение параллелепипеда проходит через точки B и D и образует с плоскостью ABC угол =arctg . Найдите площадь сечения.

Задание№9.

Диаметр АС основания конуса равен образующей РА этого конуса. Хорда основания ВС составляет угол 300. Найдите косинус угла между прямыми АР и ВС.

Задание№10.

В правильной четырехугольной призме ABСDA1B1C1D1 стороны основания равны 3, а боковые ребра равны 6. На ребре АА1 отмечена точка Е так, что АЕ:ЕА1 = 4:3. Найдите угол между плоскостями АВС и ВЕD1.


 

Вариант№12.

Задание№1.

Даны координаты вершин пирамиды А1А2А3А4:

А1(-3;12;4), А2(4;-4-30), А3(7;-2;7), А4(-2;13;4). Найти:

1)Длину ребра А1А2;

2) Угол между ребрами А1А2 и А1А4;

3) Угол между ребром А1А4 и гранью А1А2А3;

4) Площадь грани А1А2А3;

5) Объем пирамиды.

Задание№2.

В прямоугольном параллелепипеде ABCDA1B1C1D1 ребро AB= , ребро AD= , ребро АА1=6. Точка К- середина ребра СС1. Найдите площадь сечения, проходящего через точки A1,D1 и К.

Задание№3.

Точки A(-3;5;-3), B(0;1;10), C(0;6;3), E(5;3;t) служат вершинами параллелепипеда, объем которого равен 36. Найти t.

Задание№4.

Проверить, лежат ли в одной плоскости точки А(-7;3;5), B(2;0;-1), C(6;1;-1), D(-2;5;10). Найти линейную зависимость вектора , если это возможно.

Задание№5.

Дан параллелепипед ABCDA1B1C1D1 построенный на векторах . Найти высоту, проведенную из вершины A1 на грань ABCD.

Задание№6.

Ребро куба АBCDA1B1C1D1 равно . Найдите:

а) расстояние от вершины С до плоскости BDC1;

б) угол между диагональю грани и плоскостью

 


Задание№7.

На ребре СС1 куба ABCDA1B1C1D1 отмечена точка Е так, что СЕ:ЕС1=2:4. Найдите угол между прямыми ВЕ и АС1.

Задание№8.

В правильной треугольной пирамиде SАВС с вершиной S высота равна 5, а боковые ребра равны 12. Найдите площадь сечения этой пирамиды плоскостью, проходящей через середины сторон АВ и АС параллельно прямой SА.

Задание№9.

В правильной четырехугольной пирамиде АВСMT со стороной основания АВ=2 и высотой ТО1=1. Найдите косинус угла между прямыми ОТ и MK, где О и К - середины ребер АВ и ТС.

Задание№10.

В правильной треугольной призме ABCA1B1C1, все ребра которой равны 3, точка D середина ребра A1B1. Найдите тангенс угла между прямыми AD и BC1.


 

Вариант№13.

Задание№1.

Даны координаты вершин пирамиды А1А2А3А4:

А1(0;6;8), А2(6;3;2), А3(9;4;6), А4(2;8;10). Найти:

1)Длину ребра А1А2;

2) Угол между ребрами А1А2 и А1А4;

3) Угол между ребром А1А4 и гранью А1А2А3;

4) Площадь грани А1А2А3;

5) Объем пирамиды.

Задание№2.

В прямоугольном параллелепипеде ABCDA1B1C1D1 ребро AB= , ребро AD= , ребро АА1=2. Точка К- середина ребра ВВ1. Найдите площадь сечения, проходящего через точки A1,D1 и К.

Задание№3.

Точки A(8;4;6), B(3;0;2), C(1;2;4), E(1;t;2) служат вершинами параллелепипеда, объем которого равен 16. Найти t.

Задание№4.

Проверить, лежат ли в одной плоскости точки А(3;2;3), B(3;-1;1), C(5;0;2), D(-4;3;5) Найти линейную зависимость вектора , если это возможно.

Задание№5.

Дан параллелепипед ABCDA1B1C1D1 построенный на векторах . Найти высоту, проведенную из вершины A1 на грань ABCD.

Задание№6.

Ребро куба АBCDA1B1C1D1 равно . Найдите:

а) расстояние от вершины С до плоскости BDC1;

б) угол между диагональю грани и плоскостью

 


Задание№7.

На ребре СС1 куба ABCDA1B1C1D1 отмечена точка K так, что СЕ:ЕС1=3:2. Найдите угол между прямыми ВK и АС1.

Задание№8.

В правильной треугольной пирамиде МАВС с вершиной М высота равна 6, а боковые ребра равны 9. Найдите площадь сечения этой пирамиды плоскостью, проходящей через середины сторон АВ и АС параллельно прямой МА.

Задание№9.

В правильной четырехугольной пирамиде АВСMT со стороной основания АВ=6 и высотой ТО1=2. Найдите косинус угла между прямыми ОТ и MK, где О и К - середины ребер АВ и ТС.

Задание№10.

В правильной треугольной призме ABCA1B1C1, все ребра которой равны , точка D середина ребра A1B1. Найдите тангенс угла между прямыми AD и BC1.


 

Вариант №14.

Задание№1.

Даны координаты вершин пирамиды А1А2А3А4:

А1(2;-3;5), А2(0;-1;-2), А3(3;-4;-3), А4(0;-2;3). Найти:

1)Длину ребра А1А2;

2) Угол между ребрами А1А2 и А1А4;

3) Угол между ребром А1А4 и гранью А1А2А3;

4) Площадь грани А1А2А3;

5) Объем пирамиды.

Задание№2.

В правильной четырёхугольной пирамиде MABCD с вершиной M стороны основания равны , а боковые рёбра равны 8.Найдите площадь сечения пирамиды плоскостью, проходящей через точку B и середину ребра MD параллельно прямой AC.

Задание№3.

Проверить, лежат ли точки A(2;5;0), B(3;2;4), C(3;0;0), D(2;2;-2) в одной плоскости.

Задание№4.

Точки A(-3;2;-3), B(5;5;5), C(0;1;1), E(5;t;2) служат вершинами параллелепипеда, объем которого равен 36. Найти t.

Задание№5.

Дан параллелепипед ABCDA1B1C1D1 построенный на векторах . Найти высоту, проведенную из вершины A1 на грань ABCD.

Задание№6.

Ребро куба АBCDA1B1C1D1 равно . Найдите:

а) расстояние от вершины С до плоскости BDC1;

б) угол между диагональю грани и плоскостью

 

Задание№7.

В прямоугольном параллелепипеде ABCDA1B1C1D1,AB = , AD=AA1= . Найдите угол между прямой АВ1 и плоскостью АВС1.

Задание №8.

Точка Е - середина ребра АА1 куба ABCDA1B1C1D1. Найдите площадь сечения куба плоскостью C1DE, если ребра куба равны .

Задание№9.

В правильной четырехугольной пирамиде ABCDS с вершиной S боковое ребро АS вдвое меньше стороны основания АВ. Найдите угол между прямыми AS и BK, где К – точка пересечения медиан грани СDS.

Задание №10.

Длины всех ребер правильной четырехугольной пирамиды SABCD равны . Найдите угол между прямыми SН и ВМ, если отрезок SН - высота пирамиды, точка М - середина ее бокового ребра АS.


Вариант№15.

Задание №1.

Даны координаты вершин пирамиды А1А2А3А4:

А1(-6;-4;-2), А2(1;-3;-5), А3(4;-2;-1), А4(0;2;2). Найти:

1)Длину ребра А1А2;

2) Угол между ребрами А1А2 и А1А4;

3) Угол между ребром А1А4 и гранью А1А2А3;

4) Площадь грани А1А2А3;

5) Объем пирамиды.

Задание№2.

В прямоугольном параллелепипеде ABCDA1B1C1D1 ребро AB= , ребро AD= , ребро АА1= . Точка К- середина ребра ВВ1. Найдите площадь сечения, проходящего через точки A1,D1 и К.

Задание№3.

Даны три вершины параллелограмма А(-4;-1;0), B(1;-3;-5), C(5;-2;-1). Найти длину высоты, опущенной из вершины С (через площадь параллелограмма).

Задание№4.

Точки А(-0;-3;-1), В(5;-3;-1), С(5;-3;-5), D(-6;t;2). служат вершинами параллелепипеда, объем которого равен 36. Найти t.

Задание№5.

Докажите, что если точки пересечения медиан треугольников ABC и А1В1С1 совпадают, то прямые АА1, ВВ1 и СС1 параллельны некоторой плоскости.

Задание№6.

Ребро куба АBCDA1B1C1D1 равно . Найдите:

а) расстояние от вершины С до плоскости BDC1;

б) угол между диагональю грани и плоскостью

Задание№7.

На ребре СС1 куба ABCDA1B1C1D1 отмечена точка Е так, что СЕ:ЕС1=4:6. Найдите угол между прямыми ВЕ и АС1.

Задание№8.

В прямоугольном параллелепипеде ABCDA1B1C1D1 AB=BC= , AA1=3 . Сечение параллелепипеда проходит через точки B и D и образует с плоскостью ABC угол =arctg . Найдите площадь сечения.

Задание№9.

Найдите площадь сечения правильной четырехугольной пирамиды SАВСD плоскостью, параллельной апофеме SL боковой грани SВС и медиане АМ боковой грани SАВ и проходящей через середину бокового ребра SC, если сторона основания пирамиды равна 4, а расстояние от вершины пирамиды до секущей плоскости равно 30/11.

Задание№10.

В кубе ABCDA1B1C1D1 точки E и K середины ребер соответственно A1B1 и B1C1. Найдите косинус угла между прямыми AE и BK.

 

 


 

Вариант№16.

Задание №1.

Даны координаты вершин пирамиды А1А2А3А4:

А1(-2;0;-3), А2(8;-3;-5), А3(4;-3;-4), А4(-10;0;2). Найти:

1)Длину ребра А1А2;

2) Угол между ребрами А1А2 и А1А4;

3) Угол между ребром А1А4 и гранью А1А2А3;

4) Площадь грани А1А2А3;

5) Объем пирамиды.

Задание №2.

Диагональ основания правильной четырехугольной призмы равна , а диагональ призмы наклонена к плоскости основания под углом 45°. Найдите площадь сечения призы, проходящего через сторону нижнего основания и противоположную сторону верхнего основания.

Задание№3.

Даны координаты вершин параллелепипеда: A(-0;-5;-3), B(5;-6;-10), C(7;-5;-3), D(-6;2;2). Найти объем параллелепипеда, его высоту, опущенную из вершины С, угол между вектором AD и гранью, в которой лежат векторы АВ и АС.

Задание №4.

Проверить, лежат ли в одной плоскости точки A(6;4;1), B(5;2;7), C(3;7;0), D(0;2;1). Найти линейную зависимость вектора , если это возможно.

Задание №5.

Докажите, что если точки пересечения медиан треугольников ABC и А1В1С1 совпадают, то прямые АА1, ВВ1 и СС1 параллельны некоторой плоскости.

Задание №6.

Ребро куба АBCDA1B1C1D1 равно . Найдите:

а) расстояние от вершины С до плоскости BDC1;

б) угол между диагональю грани и плоскостью

 

Задание №7.

Найдите расстояние между скрещивающимися диагоналями АВ1 и ВС1 смежных граней АА1В1В и ВВ1С1С куба ABCDA1B1C1D1, если ребро этого куба равно .

Задание №8.

В кубе ABCDA1B1C1D1 со стороной a точка K является серединой стороны верхнего основания B1C1, точка L делит другую сторону C1D1 этого основания в отношении 4:3, считая от вершины С1, точка N является серединой бокового ребра АА1. Найдите площадь сечения, проходящего через точки К, L, N.

Задание№9.

В правильной треугольной призме ABCA 1 B 1 C 1, все ребра которой равны , найдите косинус угла между прямыми AB и CA 1.

Задание №10.

В правильной прямоугольной призме ABCA 1 B 1 C 1все ребра которой равны найдите квадрат косинуса угла между прямыми АВ и А1С.


 

Вариант№17.

Задание№1.

Даны координаты вершин пирамиды А1А2А3А4:

А1(5;0;5), А2(7;6;3), А3(1;2;3), А4(7;0;1). Найти:

1)Длину ребра А1А2;

2) Угол между ребрами А1А2 и А1А4;

3) Угол между ребром А1А4 и гранью А1А2А3;

4) Площадь грани А1А2А3;

5) Объем пирамиды.

Задание№2.

В основании треугольной пирамиды SABC лежит прямоугольный треугольник АВС. Середина D гипотенузы этого треугольника является основанием высоты SD данной пирамиды. Известно, что SD=2, AC=4, BC=9. Через середину высоты SD проведено сечение пирамиды плоскостью, параллельной ребрам AC и SB. Найти площадь этого сечения.

Задание№3.

Даны три вершины параллелограммаA(5;7;2), B(8;3;0), C(6;0;3). Найти длину высоты, опущенной из вершины С (через площадь параллелограмма).

Задание №4.

Проверить, лежат ли в одной плоскости точки А(5;1;1), В(1;0;2), С(7;5;-1), D(1;-4; 1). Найти линейную зависимость вектора , если это возможно.

Задание№5.

Дан параллелепипед ABCDA1B1C1D1 построенный на векторах . Найти высоту, проведенную из вершины A1 на грань ABCD.

Задание№6.

Ребро куба АBCDA1B1C1D1 равно . Найдите:

а) расстояние от вершины С до плоскости BDC1;

б) угол между диагональю грани и плоскостью

Задание№7.

Основание пирамиды – прямоугольник со сторонами 6 и 10. Одно из боковых рёбер перпендикулярно плоскости основания и равно 3. Найдите расстояние между этим ребром и скрещивающейся с ним диагональю основания, а также боковую поверхность пирамиды.

Задание№8.

На ребре МВ правильной пирамиды МАВС взяты точка К – середина этого ребра и точка L – середина отрезка ВК. Постройте сечение пирамиды плоскостью, проходящей через точку L параллельно прямым КА и МС. Найдите площадь полученного сечения, если сторона основания равна , а боковое ребро равно 2.

Задание №9.

В основании прямой призмы ABCDA1B2C3D4 лежит ромб ABCD со сторонойи углом А, равным 35°. На ребрах AB, B1C1 и DC взяты соответственно точки E, F и K так, что AE=EB, B1F=FC1 и DK=3KC. Найдите косинус угла между плоскостями EFK и ABC, если высота призмы равна 8.

Задание№10.

В правильной четырёхугольной призме ABCDA1B1C1D1 стороны основания равны 2, а боковые ребра равны 5. На ребре AA1 отмечена точка E так, что AE:EA1=3:1. Найдите угол между плоскостями ABC и BED1.

 

 


 

Вариант№18.

Даны координаты вершин пирамиды А1А2А3А4:

А1(6;-8;4), А2(5;-2;-8), А3(6;-9;-63), А4(3;1;5). Найти:

1)Длину ребра А1А2;

2) Угол между ребрами А1А2 и А1А4;

3) Угол между ребром А1А4 и гранью А1А2А3;

4) Площадь грани А1А2А3;

5) Объем пирамиды.

Задание№2.

В параллелограмме ABCD даны векторы Найти площадь параллелограмма, построенного на диагоналях параллелограмма ABCD.

Задание№3.

Даны три вершины параллелограмма . Найти длину высоты, опущенной из вершины С (через площадь параллелограмма).

Задание№4.

Проверить, лежат ли в одной плоскости точки Найти линейную зависимость вектора , если это возможно.

Задание№5.

Докажите, что через данную точку можно провести плоскость, параллельную двум данным скрещивающимся прямым, и притом только одну.

Задание №6.

Ребро куба АBCDA1B1C1D1 равно . Найдите:

а) расстояние от вершины С до плоскости BDC1;

б) угол между диагональю грани и плоскостью

Задание№7.

Найдите угол между скрещивающимися медианами двух граней правильного тетраэдра.

Задание№8.

В прямоугольном параллелепипеде ABCDA1B1C1D1 AB=BC= , AA1=2 . Сечение параллелепипеда проходит через точки B и D и образует с плоскостью ABC угол =arctg . Найдите площадь сечения.

Задание№9.

Диаметр АС основания конуса равен образующей РА этого конуса. Хорда основания ВС составляет угол 450. Найдите косинус угла между прямыми АР и ВС.

Задание№10.

В правильной четырехугольной призме ABСDA1B1C1D1 стороны основания равны 8, а боковые ребра равны 12. На ребре АА1 отмечена точка Е так, что АЕ:ЕА1 = 6:3. Найдите угол между плоскостями АВС и ВЕD1.


 

Вариант№19.

<




Поделиться с друзьями:


Дата добавления: 2016-09-03; Мы поможем в написании ваших работ!; просмотров: 557 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Начинать всегда стоит с того, что сеет сомнения. © Борис Стругацкий
==> читать все изречения...

2321 - | 2074 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.013 с.