Теоретическая механика как одна из важнейших физико-математических дисциплин играет существенную роль в подготовке инженеров любых специальностей. На основных законах и принципах теоретической механики базируются многие общеинженерные дисциплины, такие, как сопротивление материалов, строительная механика, гидравлика, теория механизмов и машин, детали машин и др. В различных курсах по машиностроительным, механическим, строительным, приборостроительным и многим другим специальностям также широко используются положения теоретической механики. На основе теорем и принципов теоретической механики решаются многие инженерные задачи и осуществляется проектирование новых машин, конструкций и сооружений. Хорошее усвоение курса теоретической механики требует не только глубокого изучения теории, но и приобретения твердых навыков в решении задач. Для этого необходимо самостоятельно решить большое количество задач по всем разделам.
В курсе теоретической механики студенты изучают три ее раздела: статику, кинематику и динамику (включая элементы аналитической механики и теории колебаний).
Для изучения курса необходимо иметь соответствующую математическую подготовку. Во всех разделах курса, начиная со статики, широко используется векторная алгебра. Необходимо уметь вычислять проекции векторов на координатные оси, находить геометрически (построением векторного треугольника или многоугольника) и аналитически (по проекциям на координатные оси) сумму векторов, вычислять скалярное и векторное произведения двух векторов и знать свойства этих произведений, а в кинематике и динамике - дифференцировать векторы. Надо также уметь свободно пользоваться системой прямоугольных декартовых координат на плоскости и в пространстве, знать, что такое единичные векторы (орты) этих осей и как выражаются составляющие вектора по координатным осям с помощью ортов.
Для изучения кинематики надо совершенно свободно уметь дифференцировать функции одного переменного, строить графики этих функций, быть знакомым с понятиями о естественном трехграннике, кривизне кривой и радиусе кривизны, знать основы теории кривых 2-го порядка, изучаемой в аналитической геометрии.
Для изучения динамики надо уметь находить интегралы (неопределенные и определенные) от простейших функций, вычислять частные производные и полный дифференциал функций нескольких переменных, а также уметь интегрировать дифференциальные уравнения 1-го порядка с разделяющимися переменными и линейные дифференциальные уравнения 2-го порядка (однородные и неоднородные) с постоянными коэффициентами.
При изучении материала курса следует придерживаться следующих этапов:
1. Читая радел учебника, нужно прежде всего уяснить существо каждого излагаемого там вопроса. Главное - это понять изложенное в учебнике, ане "заучить". Изучать материал рекомендуется по темам (пунктам приведенной выше программы со ссылками на страницы основного учебника) или по главам (параграфам) других указанных учебников. Сначала следует прочитать весь материал темы (параграфа), особенно не задерживаясь на том, что показалось не совсем понятным: часто это становится понятным из последующего. Затем надо вернуться к местам, вызвавшим затруднения и внимательно разобраться в том, что было неясно. Особое внимание при повторном чтении обратите на формулировки соответствующих определений, теорем и т.п. (они обычно бывают набраны в учебнике курсивом или разрядкой); в точных формулировках, как правило, существенно каждое слово и очень полезно понять, почему данное положение сформулировано именно так. Однако не следует стараться заучивать формулировки; важно понять их смысл и уметь изложить результат своими словами. Необходимо также понять ход всех доказательств (в механике они обычно не сложны) и разобраться в их деталях. Доказательства надо уметь воспроизводить самостоятельно, что нетрудно сделать, поняв идею доказательства; пытаться просто их "заучивать" не следует, никакой пользы это не принесет. Закончив изучение темы, полезно составить краткий конспект, по возможности не заглядывая в учебник;
2. При изучении курса особое внимание следует уделить приобретению навыков решения задач. Для этого, изучив материал данной темы, надо сначала обязательно разобраться в решениях соответствующих задач, которые приводятся в учебнике, обратив особое внимание на методическиеуказания поих решению.Затем постарайтесь решить самостоятельно в качестве практических занятий несколько аналогичных задач из сборника задач И. В. Мещерского [4] (рекомендуемый список задач по темам и методические указания их решения приведены в разделе 4).
3. После приобретения практических навыков решите соответствующую задачу из контрольной работы (раздел 5).
4. Закончив изучение темы, нужно проверить, можете ли вы дать ответ на все вопросы программы курса по этой теме (осуществить самопроверку). Перечень вопросов для самопроверки приводится в разделе 6.
5. Следует иметь в виду, что в различных учебникахматериал может излагаться в разной последовательности. Поэтому ответна какой-нибудь вопрос программы может оказаться в другой главеучебника, но наизучении курса в целом это, конечно, никак не скажется. Указания по выполнению контрольных работ приводятся ниже. Их надо прочитать обязательно и ими руководствоваться. Кроме того, к каждой задаче даются конкретные методические указания по ее решению и приводится пример решения.