Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Схема и описание установки

Цели работы

Освоение одного из методов определения коэффициента теплопроводности вещества (метод цилиндрического слоя) и закрепление знаний по теории теплопроводности.

Основные положения

Теплопроводность – молекулярный перенос теплоты в среде с неоднородным распределением температуры посредством теплового движения микрочастиц.

Перенос теплоты теплопроводностью в чистом виде имеет место только в твердых телах с малым коэффициентом термического расширения и выражается эмпирическим законом Био-Фурье, согласно которому вектор удельного теплового потока прямо пропорционален градиенту температуры:

. (1)

Знак «минус» в уравнении (1) показывает, что направление теплового потока противоположно направлению градиента температуры, а коэффициент пропорциональности λ характеризует способность тел проводить теплоту и называется коэффициентом теплопроводности. Количественно коэффициент теплопроводности λ – это тепловой поток (Вт), проходящий через единицу поверхности (м2) при единичном градиенте температур (Κ/м), и имеющий размерность Вт/(м·Κ).

Коэффициент теплопроводности – физическая характеристика, зависящая от химического состава и физического строения вещества, его температуры, влажности и ряда других факторов. Коэффициент теплопроводности имеет максимальные значения для чистых металлов и минимальные для газов.

Рассмотрим цилиндрическую стенку (трубку) длиной l с внутренним r1 и внешним r2 радиусами (рис. 1). Заданы температуры T1 внутренней и T2 наружной поверхностей стенки. Условием одномерности теплового потока будет условие l >>> r2, откуда следует дq/дl = 0.

Дифференциальное уравнение теплопроводности в цилиндрических координатах при λ =const и отсутствии внутреннего источника теплоты (Qv =0) имеет вид (r – текущий радиус)

.

При заданных граничных условиях

r = r1; T = T1;

r = r2; T = T2.

Получим

. (2)

Согласно уравнению (2) температура цилиндрической стенки меняется по логарифмической зависимости (рис. 1).

Удельный тепловой поток q (поток через единицу площади цилиндрической поверхности) будет величиной переменной

.

Мощность теплового потока Q = q·F через цилиндрическую поверхность площадью F = 2 π ·r·l (l – длина цилиндрической стенки) есть постоянная величина, равная

. (3)

Формулу (3) можно записать, используя понятие термического сопротивления:

,

где – термическое сопротивление цилиндрической стенки, м·Κ /Вт.

Удельный тепловой поток на единицу длины стенки ql = Q/l:

.

Таким образом, предлагаемый экспериментальный метод определения коэффициента теплопроводности основан на измерении:

· мощности теплового потока, проходящего через цилиндрический слой;

· перепада температур между внутренней и наружной поверхностями слоя тепловой изоляции;

· геометрических характеристик слоя тепловой изоляции.

Схема и описание установки

Исследуемый материал 1 (рис. 2) нанесен в виде цилиндрического слоя (d1 = 0,02, м; d2 = 0,05, м) на наружную поверхность металлической трубы Длина цилиндра тепловой изоляции составляет 1 м, что значительно больше наружного диаметра. Источником теплового потока служит электронагреватель 3, который включен в электрическую цепь через автотрансформатор 4. Для определения мощности теплового потока служат вольтметр 5 и амперметр 6. Для измерения температур на внутренней и наружной поверхностях тепловой изоляции применяются хромель-копелевые термопары 7 и 8 в комплекте с потенциометром 9.

Порядок проведения опыта

1. Проверить состояние всех измерительных приборов. Включив электропитание установки, по указанию преподавателя установить по вольтметру 5 требуемую величину напряжения. Далее в течение всего опыта мощность теплового потока поддерживается постоянной. Таким образом, мощность теплового потока определяется по показаниям вольтметра и амперметра.

2. Через каждые 5 – 10 минут выполняются замеры термоЭДС термопар по потенциометру 9, а затем, пользуясь тарировочным графиком, переводят значения термоЭДС в величины температур, °С (с учетом температур холодных спаев термопар). Результаты измерений заносят в протокол наблюдений (табл. 1).

 

 

Таблица 1.

№ п/п Измеряемая величина Обозна- чение Единицы измерения Номера опытов
         
  Сила тока I а          
  Напряжение U в          
  Температура внутренней поверхности слоя изоляции t 2 °С          
  Температура наружной поверхности слоя изоляции t 1 °С          

3. При достижении стационарного режима, который характеризуется постоянством измеряемых температур на наружной и внутренней поверхностях тепловой изоляции, завершают отсчеты всех измеряемых величин, и единичный опыт считается законченным.



<== предыдущая лекция | следующая лекция ==>
Определение энергии диссоциации двухромовокислого калия | Проектирование алгоритмов и программ с использованием цикла с предусловием
Поделиться с друзьями:


Дата добавления: 2016-09-03; Мы поможем в написании ваших работ!; просмотров: 320 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Вы никогда не пересечете океан, если не наберетесь мужества потерять берег из виду. © Христофор Колумб
==> читать все изречения...

2309 - | 2124 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.011 с.