Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Метод наименьших квадратов. Для получения неизвестных оценок параметров распределения генеральной совокупности Х определенное количество выборочных начальных и/или центральных моментов

Метод моментов

Для получения неизвестных оценок параметров распределения генеральной совокупности Х определенное количество выборочных начальных и/или центральных моментов приравниваются к соответствующим теоретическим аналогам, полученным для предполагаемого теоретического закона распределения.

Предположим, что - плотность распределения случайной величины Х. Определим с помощью этой плотности k каких-либо моментов случайной величины, например, первые k начальных моментовпо формулам

.

По выборке наблюдений случайной величины найдем значения соответствующих выборочных моментов

Попарно приравнивая теоретические моменты их выборочным аналогам, получаем систему из k уравнений с k неизвестными, разрешая которую получаем искомые значения.

Согласно методу моментов, параметры выбираются с таким расчетом, чтобы несколько важнейших числовых характеристик (моментов) теоретического распределения были равны соответствующим статистическим характеристикам. Например, если теоретическая кривая зависит только от двух параметров и , эти параметры выбираются так, чтобы математическое ожидание и дисперсия теоретического распределения совпадали с соответствующими статистическими характеристиками и Если кривая зависит от трех параметров, можно подобрать их так, чтобы совпали первые три момента и т.д. При выравнивании статистических рядов может оказаться полезной специально разработанная система кривых Пирсона, каждая из которых зависит в общем случае от четырех параметров. При выравнивании эти параметры выбираются с тем расчетом, чтобы сохранить первые четыре момента статистического распределения (математическое ожидание, дисперсию, третий и четвертый моменты). Следует заметить, что при выравнивании статистических рядов нерационально пользоваться моментами порядка выше четвертого, так как точность вычисления моментов резко падает с увеличением их порядка.

 

Метод наименьших квадратов

При сглаживании эмпирических зависимостей очень часто исходят из так называемого принципа или метода наименьших квадратов, считая, что наилучшим приближением к эмпирической зависимости в данном классе функций является такое, при котором сумма квадратов отклонений обращается в минимум. При этом вопрос о том, в каком именно классе функций следует искать наилучшее приближение, решается уже не из математических соображений, а из соображения, связанных с физикой решаемой задачи, с учетом характера полученной эмпирической кривой и степени точности произведенных наблюдений. Часто принципиальный характер функции, выражающей исследуемую зависимость, известен заранее из теоретических соображении, из опыта же требуется получить лишь некоторые численные параметры, входящие в выражение функции; именно эти параметры подбираются с помощью метода наименьших квадратов.

Задача восстановления некоторой функции методом наименьших квадратов требует, чтобы мера отклонения экспериментальных значений от выбранной функции была минимальной в заданных точках В качестве таких пар точек, как правило, выбирают середины интервалов гистограммы и высоты, им соответствующие. Затем строится функция расхождений теоретических и эмпирических значений в точках , которая подлежит минимизации

Требуется подобрать коэффициенты так, чтобы величина I была наименьшей. Для решения этой задачи находят частные производные от функции по всем переменным , приравнивают их к нулю и решают полученную систему уравнений

 



<== предыдущая лекция | следующая лекция ==>
Установить для всего текста междустрочный интервал – полуторный, использую команду Формат/Абзац/интервал междустрочный | Аппаратура, оборудование и материалы
Поделиться с друзьями:


Дата добавления: 2016-09-03; Мы поможем в написании ваших работ!; просмотров: 461 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Логика может привести Вас от пункта А к пункту Б, а воображение — куда угодно © Альберт Эйнштейн
==> читать все изречения...

2254 - | 2184 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.011 с.