Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Трехмерная и n-мерная система координат

Двумерная система координат

Точка P имеет координаты (5,2).

Современная Декартова система координат в двух измерениях (также известная под названием прямоугольная система координат) задается двумя осями, расположенными под прямым углом друг к другу. Плоскость, в которой находятся оси, называют иногда xy-плоскости. Горизонтальная ось обозначается как x (ось абсцисс), вертикальная как y (ось ординат). В трехмерном пространстве до двух добавляется третья ось, перпендикулярная xy-плоскости - ось z. Все точки в системе декартовых координат, составляют так называемый Декартов пространство.

Точка пересечения, где оси встречаются, называется началом координат и обозначается как O. Соответственно, ось x может быть обозначена как Ox, а ось y - как Oy. Прямые, проведенные параллельно каждой оси на расстоянии единичного отрезка (единицы измерения длины) начиная с начала координат, формируют координатную сетку.

Точка в двумерной системе координат задается двумя числами, которые определяют расстояние от оси Oy (абсцисса или х-координата) и от оси Ох (ордината или y-координата) соответственно. Таким образом, координаты формируют упорядоченную пару (кортеж) чисел (x, y). В трехмерном пространстве добавляется еще z-координата (расстояние точки от ху-плоскости), и формируется упорядоченная тройка координат (x, y, z).

Выбор букв x, y, z происходит от общего правила наименования неизвестных величин второй половиной латинского алфавита. Буквы первой его половины используются для именования известных величин.

Стрелки на осях отражают то, что они простираются до бесконечности в этом направлении.

Пересечение двух осей создает четыре квадранта на координатной плоскости, которые обозначаются римскими цифрами I, II, III, и IV. Обычно порядок нумерации квадрантов - против часовой стрелки, начиная с правого верхнего (т.е. там, где абсциссы и ординату - положительные числа). Значение, которых приобретают абсциссы и ординаты в каждом квадранте, можно свести в следующую таблицу:

Квадрант x y
I > 0 > 0
II <0 > 0
III <0 <0
IV > 0 <0

Трехмерная и n-мерная система координат

На этом рисунке точка P имеет координаты (5,0,2), а точка Q - координаты (-5, -5,10)

Координаты в трехмерном пространстве формируют тройку (x, y, z).

Координаты x, y, z для трехмерной декартовой системы можно понимать как расстояния от точки до соответствующих плоскостей: yz, xz, и xy.

Трехмерная Декартова система координат является очень популярной, так как соответствует привычным представлениям о пространственных измерения - высоту, ширину и длину (то есть три измерения). Но в зависимости от области применения и особенностей матиматичного аппарата, смысл этих трех осей может быть совсем другим.

Системы координат высших размерностей также применяются (например, 4-мерная система для изображения пространства-времени в специальной теории относительности).

Система декартовых координат в абстрактном n-мерном пространстве является обобщением изложенных выше положений и имеет n осей (по каждой на измерение), что является взаимоперпендикулярных. Соответственно, положение точки в таком пространстве будет определяться кортежем из n координат, или n-кой.

Уравнение прямой в (планиметрия) в каноническом

виде, параметрическом и общем виде.

Эти уравнения называются каноническими уравнениями прямой в пространстве.

xx 0
l

=

yy 0
m

=

zz 0
n
(1)

1. От канонических уравнений легко перейти к общим уравнениям прямой, например:

  ì ï ï í ï ï î
xx 0
l

=

yy 0
m
yy 0
m

=

zz 0
n
   
     

2. Одна или две координаты направляющего вектора прямой

a

могут быть равны нулю, это означает, что числитель соответствующей дроби тоже равен нулю.

Если в (1) ввести параметр t

xx 0
l

=

yy 0
m

=

zz 0
n

= t,

то уравнения прямой можно записать в виде

  ì ï í ï î
x = x 0 + l · t
y = y 0 + m · t
z = z 0 + n · t
   
     

Эти уравнения называются параметрическими уравнениями прямой. Они имеют механический смысл: если параметр t рассматривать как время, а x, y, z — как координаты материальной точки, то параметрические уравнения описывают равномерное прямолинейное движение точки со скоростью

v

= { l, m, n }, (x 0, y 0, z 0) —начальное положение точки (при t = 0).

 

 



<== предыдущая лекция | следующая лекция ==>
Базові терміни і поняття курсу | 
Поделиться с друзьями:


Дата добавления: 2016-09-03; Мы поможем в написании ваших работ!; просмотров: 2346 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Если вы думаете, что на что-то способны, вы правы; если думаете, что у вас ничего не получится - вы тоже правы. © Генри Форд
==> читать все изречения...

2260 - | 2182 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.011 с.