Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Оценка параметров линейной регрессии и коэффициента корреляции




Линейная регрессия находит широкое применение в эконометрике ввиду четкой экономической интерпретации ее параметров. Линейная регрессия сводится к нахождению уравнения вида или .

Уравнение вида позволяет по заданным значениям фактора x находить теоретические значения результативного признака, подставляя в него фактические значения фактора x.

Построение линейной регрессии сводится к оценке ее параметров – a и b. Классический подход к оцениванию параметров линейной регрессии основан на методе наименьших квадратов (МНК). МНК позволяет получить такие оценки параметров a и b, при которых сумма квадратов отклонений фактических значений результативного признака y от теоретических минимальна:

Чтобы найти минимум функции, надо вычислить частные производные по каждому из параметров a и b и приравнять их к нулю.

Обозначим через S(a,b): , тогда

После несложных преобразований, получим следующую систему линейных уравнений для оценки параметров a и b:

Решая систему уравнений, найдем искомые оценки параметров a и b:

, , где .

Так как , то

Параметр b называется коэффициентом регрессии. Он имеет смысл показателя силы связи между вариацией x и вариацией y. Его величина показывает среднее изменение результата с изменением фактора на одну единицу.

Коэффициент a может не иметь экономического содержания, интерпретировать можно только знак, он показывает направления связи.

Уравнение регрессии всегда дополняется показателем тесноты связи. При использовании линейной регрессии в качестве такого показателя выступает линейный коэффициент корреляции rxy, который можно рассчитать по следующим формулам:

Линейный коэффициент корреляции находится в пределах: -1≤rxy≤1. Чем ближе он по модулю к 1, тем теснее связь. Знак указывает направление связи: «+» - прямая зависимость, «-» имеет место при обратной зависимости.

Для оценки качества подбора линейной функции рассчитывается квадрат линейного коэффициента корреляции , называемый коэффициентом детерминации. Коэффициент детерминации показывает сколько процентов приходится на долю учтенных в модели факторов:

Соответственно величина характеризует долю дисперсии y, вызванную влиянием остальных, не учтенных в модели, факторов.

После того как найдено уравнение линейной регрессии, проводится оценка значимости как уравнения в целом, так и отдельных его параметров.

Оценка параметров уравнения регрессии осуществляется с помощью t-критерия Стьюдента. С этой целью по каждому из параметров определяется его стандартная ошибка: mb, ma и mr.

Стандартная ошибка коэффициента регрессии определяется по формуле:

Величина стандартной ошибки совместно с t-распределением Стьюдента при n-2 степенях свободы применяется для проверки значимости коэффициента регрессии и для расчета его доверительного интервала.

Для оценки значимости коэффициента регрессии его величина сравнивается с его стандартной ошибкой, т.е. определяется фактическое значение t-критерия Стьюдента:

, причем

, причем , т.е.

которое затем сравнивается с табличным значением при определенном уровне значимости a и числе степеней свободы n-2.

Если tфакт>tтабл, то делается вывод о значимости параметра.


 






Поделиться с друзьями:


Дата добавления: 2016-07-29; Мы поможем в написании ваших работ!; просмотров: 478 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Победа - это еще не все, все - это постоянное желание побеждать. © Винс Ломбарди
==> читать все изречения...

2239 - | 2072 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.01 с.