Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Система с базисом, общий случай m уравнений, n неизвеcтных




Системой m линейных уравнений с n неизвестным и называется система вида где aij и bi (i =1,…, m; b =1,…, n) – некоторые известные числа, а x1,…,xn – неизвестные. В обозначении коэффициентов aij первый индекс i обозначает номер уравнения, а второй j – номер неизвестного, при котором стоит этот коэффициент.

Коэффициенты при неизвестных будем записывать в виде матрицы , которую назовём матрицей системы.

Числа, стоящие в правых частях уравнений, b1,…,bm называются свободными членами. Совокупность n чисел c1,…,cn называется решением данной системы, если каждое уравнение системы обращается в равенство после подстановки в него чисел c1,…,cn вместо соответствующих неизвестных x1,…,xn.

Могут возникнуть три ситуации:

1. Система может иметь единственное решение.

2. Система может иметь бесконечное множество решений. Например, . Решением этой системы является любая пара чисел, отличающихся знаком.

3. И третий случай, когда система вообще не имеет решения. Например, , если бы решение существовало, то x1 + x2 равнялосьбыодновременнонулю и единице.

Система линейных уравнений, имеющая хотя бы одно решение, называется совместной. В противном случае, т.е. если система не имеет решений, то она называется несовместной.

Базисным решением называется частное решение, получающееся из общего при нулевых значениях свободных переменных. Общимрешением разрешеннойсистемыуравненийназываетсясовокупностьвыраженийразрешенныхнеизвестныхчерезсвободныечлены и свободные неизвестные. Частным решением системы уравнений называется решение, получающиеся из общего при конкретных значениях свободных переменных и неизвестных.

Билет 18. Метод Жордана-Гаусса решения систем

Процесс решения системы уравнений методом Жордана - Гаусса, состоит из двух этапов. На первом этапе система приводится к ступенчатому виду, путемпоследовательногоисключенияпеременных.Навторомэтаперешениямыбудемпоследовательнонаходитьпеременныеизполучившейсяступенчатойсистемы.

1. Выбирается первая колонка слева, в которой есть хоть одно отличное от нуля значение.

2. Если самое верхнее число в этой колонке есть нуль, то меняется вся первая строка матрицы с другой строкой матрицы, где в этой колонке нет нуля.

3. Все элементы первой строки делятся на верхний элемент выбранной колонки.

4. Из оставшихся строк вычитается первая строка, умноженная на первый элемент соответствующей строки, с целью получить первым элементом каждой строки (кроме первой) нуль.

Далее проводим такую же процедуру с матрицей, получающейся из исходной матрицы после вычёркивания первой строки и первого столбца.

5. После повторения этой процедуры n-1 раз получаем верхнюю треугольную матрицу

6. Вычитаем из предпоследней строки последнюю строку, умноженную на соответствующий коэффициент, с тем, чтобы в предпоследней строке осталась только 1 на главной диагонали.

Повторяем предыдущий шаг для последующих строк. В итоге получаем единичную матрицу и решение на месте свободного вектора (с ним необходимо проводить все те же преобразования).

 





Поделиться с друзьями:


Дата добавления: 2016-07-29; Мы поможем в написании ваших работ!; просмотров: 386 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

80% успеха - это появиться в нужном месте в нужное время. © Вуди Аллен
==> читать все изречения...

2272 - | 2125 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.009 с.