Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Системы линейных алгебраических уравнений




Система линейных уравнений с переменными имеет вид: , где - произвольные числа, называемые соответственно коэффициентами при переменных и свободными членами уравнений.

Решением системы называется такая совокупность чисел (, , …, ), при подстановке которых каждое уравнение системы обращается в верное равенство.

Система уравнений называется совместной, если она имеет хотя бы одно решение, и несовместной, если она не имеет решений.

Совместная система уравнений называется определенной, если она имеет единственное решение, и неопределенной, если она имеет более одного решения.

Система линейных уравнений с переменными называется системой линейных однородных уравнений, если все их свободные члены равны нулю. Такая система имеет вид: .

Определение. Система линейно независимых решений называется фундаментальной, если каждое решение системы является линейной комбинацией решений .

Теорема. Если ранг матрицы коэффициентов при переменных системы линейных однородных уравнении меньше числа переменных , то всякая фундаментальная система решений состоит из решений.

 

 

Минор, алгебраичекоедопонение, ранг, их применение

Миноры и алгебраические дополнения. Теорема разложения.

Пусть имеем определитель третьего порядка: .

Минором, соответствующим данному элементу aij определителя третьего порядка, называется определитель второго порядка, полученный из данного вычёркиванием строки и столбца, на пересечении которых стоит данный элемент, т.е. i -ой строки и j -го столбца. Миноры соответствующие данному элементу aij будем обозначать Mij.

Например, минором M12, соответствующим элементу a12, будет определитель , который получается вычёркиванием из данного определителя 1-ой строки и 2-го столбца.

. (1)

Таким образом, формула, определяющая определитель третьего порядка, показывает, что этот определитель равен сумме произведений элементов 1-ой строки на соответствующие им миноры; при этом минор, соответствующий элементу a12, берётся со знаком “–”, т.е. можно записать, что


Аналогично можно ввести определения миноров для определителей второго порядка и высших порядков.

Введём ещё одно понятие.

Алгебраическим дополнением элемента aij определителя называется его минор Mij, умноженный на (–1)i+j.

Алгебраическое дополнение элемента aij обозначается Aij.

Из определения получаем, что связь между алгебраическим дополнением элемента и его минором выражается равенством Aij = (–1)i+j Mij.

ТЕОРЕМА РАЗЛОЖЕНИЯ





Поделиться с друзьями:


Дата добавления: 2016-07-29; Мы поможем в написании ваших работ!; просмотров: 396 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Стремитесь не к успеху, а к ценностям, которые он дает © Альберт Эйнштейн
==> читать все изречения...

2176 - | 2135 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.011 с.