Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Инструментальные стали и твердые сплавы




Инструментальные легированные стали по назначению де-лятся на три группы: для режущего инструмента, для штампов и для мерительного инструмента.

Стали для режущего инструмента должны обладать высокой твердостью и износостойкостью. Кроме того, они должны быть не очень хрупкими, чтобы режущий инструмент не выкрашивался.

Углеродистые инструментальные стали имеют достаточную твердость после закалки и низкого отпуска. Но прокаливаемость этих сталей относительно низкая. Для получения мартенсита их необходимо закаливать в воду. Однако это вызывает значительное коробление. Поэтому для режущего инструмента используют легированные стали, которые позволяют получить высокую твер-дость после закалки в масле и низкого отпуска в крупных изделиях.

Для изготовления режущего инструмента (резцов, сверл, метчиков, фрез, плашек и т. д.) применяют низколегированные стали X, 9ХС, ХГ и ШХ15. Эти стали содержат около 1% углерода и относительно мало недорогих и недефицитных легирующих примесей: хрома, кремния и марганца. Легированием стараются повысить прокаливаемость и твердость при высоких температурах. Твердость этих сталей в закаленном и отпущенном состоянии при комнатной температуре такая же, как у углеродистых сталей.

Сталь ШХ15 — шарикоподшипниковая. Все шарикоподшипниковые стали содержат около 1% углерода. Буква Ш в начале марки показывает основное назначение этой стали — шарикоподшипниковая. Цифра 15 после буквы X показывает, что сталь содержит около 1,5% хрома. Для шарикоподшипниковых сталей принято содержание хрома указывать в десятых долях процента, а не в целых процентах, как при стандартной маркировке всех легированных сталей. В структуре шарикоподшипниковых сталей должно быть как можно меньше неметаллических включений. В стандарте на шарикоподшипниковые стали указаны ограничения на количество и размеры неметаллических включений. Эти включения являются очагами разрушения в деталях, работающих на износ. В конструкционных сталях неметаллические включения, встречающиеся в обычных количествах, практически не сказываются на свойствах. Для режущего инструмента, так же как шариковых и роликовых подшипников, неметаллические включения весьма опасны: они являются очагами выкрашивания.

Высокой износостойкостью обладает режущий инструмент из быстрорежущих сталей Р18, Р9, Р9Ф5, Р9К5, Р10К5Ф5 и др. 188

В начале марки быстрорежущей стали принято писать буку Р. За ней следует цифра, указывающая среднее содержание вольфрама в процентах. Среднее содержание ванадия в процентах обозначают цифрой, проставленной за буквой Ф, а кобальта — за буквой К. Например, сталь Р18К5Ф2 содержит 18% вольфрама, 5% кобальта и 2% ванадия.

Режущий инструмент из быстрорежущих сталей позволяет применять более высокие скорости резания и большие подачи, тем самым повышая производительность металлорежущих станков. Быстрорежущая сталь может длительно сохранять высокую твердость при температуре до 600° С. В литом состоянии она имеет строение, представленное на рис. 102, а. Темные участки на микрофотографии состоят из мелкодисперсного перлита — троостита. Участки, напоминающие по своему строению листья папоротника, — ледебурит. Быстрорежущие стали относят к ле-дебуритному или иначе карбидному классу. Ледебурит — непременная структурная составляющая белых чугунов. В быстрорежущих сталях ледебурит образуется из сложных железовольфра-мовых карбидов при относительно низком содержании углерода (0,8—0,9%). Быстрорежущие стали поддаются ковке, несмотря на наличие ледебурита.

Их применяют для режущего инструмента в кованом и термически обработанном состоянии. При нагреве под ковку троостит превращается в вязкий аустенит. В процессе ковки скелетообразные карбиды ледебурита дробятся. После закалки и многоступенчатого отпуска структура быстрорежущей стали состоит из высоколегированного мартенсита, в котором находятся мелкораздробленные карбиды (рис. 102, б). Легирующие элементы сильно за-трудняют отпуск мартенсита. Он сохраняет высокую твердость и износостойкость до 500—550° С. Карбиды — также очень твердая и износостойкая структурная составляющая, не изменяющая своих свойств до весьма высоких температур. Поэтому быстрорежущие стали и обладают высокими режущими свойствами Режущий инструмент из быстрорежущей стали допускает ориентировочно в четыре раза большие скорости резания, чем инструмент из углеродистой стали.

Еще большую стойкость имеет инструмент из металлокерами-ческих твердых сплавов. Он обеспечивает скорости резания в семь-восемь раз большие, чем режущий инструмент из углеродистых сталей. Применение твердосплавного режущего инструмента позволяет обрабатывать такие сплавы, которые не поддаются обработке инструментом из углеродистых сталей, например жаро-прочные сплавы на никелевой основе типа нимоников.

Из металлокерамики изготавливают пластинки для напайки их на режущий инструмент из углеродистой стали. Металлокера-мические сплавы приготавливают из смеси порошков карбида вольфрама с кобальтом, смеси порошков карбидов вольфрама и титана с кобальтом или карбидов вольфрама, титана и тантала с кобальтом. Пластинки прессуют под давлением 150—200 Мн/м2 (15—20 кГ/мм2) и спекают в токе водорода при температуре 1450—1500° С. В процессе спекания кобальт частично сплавляется и в некоторой степени растворяет карбиды. Кобальт играет роль пластичной связки. Чем больше в твердом сплаве кобальта, тем лучше он переносит ударные нагрузки, но в то же время тем ниже его износостойкость.

Вольфрамокобальтовые твердые сплавы маркируют буквами ВК: от ВК2 до ВКЗО. Буквы ВК показывают, что сплав состоит из карбидов вольфрама и кобальта. Цифра указывает содержание кобальта в процентах. Например, сплав ВК15 содержит 85% карбида вольфрама и 15% кобальта.

Вольфрамотитановые твердые сплавы маркируют буквами ТК: от Т5К12В до Т30К4. Например, сплав Т30К5 содержит 30% карбида титана, 4% кобальта, остальное карбид вольфрама. Буква В в конце марки сплава Т5К12В указывает, что пластинки из него имеют крупнозернистое строение, которое обеспечивает большую эксплуатационную прочность при некотором снижении износостойкости.

Стали для штампов можно разделить на две подгруппы: стали для штампов холодной штамповки и стали для штампов горячей штамповки. Сталь для штампов холодной штамповки должна обладать высокой твердостью и износостойкостью в холодном состоянии, достаточной вязкостью, чтобы не давать трещин и не выкрашиваться при ударах. Сталь должна хорошо прокаливаться.

Для мелких штампов холодной листовой штамповки применяют стали У10, У10А, У12 и У12А. Крупные штампы, требующие хо рошей прокаливаемости и малой деформации при закалке, делают из сталей X, 9ХС, ХВГ. Для штампов с ударной нагрузкой и тонкой рабочей кромкой применяют стали с меньшим содержанием углерода — 6ХС и 5ХНВС.

Сталь для штампов горячей штамповки не должна размягчаться и давать трещины при местном нагреве. Эти штампы изготовляются из сталей 5ХНВС, 5ХНМ и 4Х8ВС.

Стали для измерительного инструмента должны сохранять стабильные размеры, обладать высокой твердостью и износостойкостью при комнатной температуре. Для стабилизации структуры, а следовательно, и размеров измерительный инструмент подвергают старению. Для изготовления измерительного инструмента применяют стали X, ХГ и др.


 

Сплавы на основе алюминия

Алюминий (Al) - серебристо-белый металл. В природе встречается в виде минералов, преимущественно алюмосиликатов. Наиболее распространенными минералами являются боксит, алунит, нефлин, содержащие глинозем Al2O3.

Получают алюминий при электролизе глинозема, Алюминий — легкий, пластичный металл, хорошо поддающийся обработке давлением (ковка, прокатка, волочение), обладающий высокой тепло- и электропроводностью.

Плотность алюминия 2,7 г/см3, температура плавления 660°С, температура кипения 2500°С, термический коэффициент линейного расширения 24 x 10-6, предел прочности 5—6 кгс/мм2, твердость по Бринеллю 17 кгс/мм2 (при прокатке прочность и твердость возрастают). На воздухе алюминий покрывается тонкой окисной пленкой, защищающей металл от дальнейшего окисления. Алюминий обладает химической стойкостью к азотной и органическим кислотам, пищевым продуктам. Легко растворяется в щелочах.

Алюминий используют для получения различных сплавов и как лигатуру в сплавах на основе меди, титана, никеля, цинка, железа. Он применяется для раскисления стали перед литьем. Из сплавов на основе алюминия наиболее известны дюралюминий и магналий.

Дюралюминий имеет состав: алюминия 95%, меди 4%, марганца и магния по 0,5%. Достоинством сплава является его легкость, хорошие литейные свойства и прочность. Предпринимались попытки использовать дюралюминий для изготовления зубных протезов, однако они были оставлены из-за коррозионной неустойчивости сплава. Использование его в зубном протезировании в настоящее время не проводится. Из дюралюминия изготавливаются некоторые предметы оснастки зуботехнических лабораторий (кюветы, артикуляторы).

Магналий — сплав, состоящий из 70% алюминия и 30% магния. По свойствам очень близок к дюралюминию. Применяется в стоматологии в тех же случаях, что и дюралюминий.

Сплавы на основе алюминия характеризуются небольшой плотностью 2,5 г/см3, сравнительно высокой прочностью на разрыв

15—22 кгс/мм2, относительным удлинением 0,5—2% и твердостью по Бринеллю 50—90 кгс/мм2.

Высокая тепло- и электропроводность способствуют применению алюминиевых сплавов для изготовления деталей двигателей внутреннего сгорания, а также разных деталей электроаппаратуры.

Детали из алюминиевых сплавов, подвергающиеся атмосферному влиянию в течение длительного времени, образуют на поверхности окисную пленку, предохраняющую деталь от коррозии.

Алюминиевые сплавы способны сохранять свои металлические свойства в условиях низкой температуры, поэтому они широко применяются для изготовления изделий, подвергающихся действию низкой температуры.

Особенно часто применяют сплавы группы алюминий — кремний: АЛ2, АЛ4, АЛ4В, АЛ9, АЛ9В, которые обладают высокими литейными свойствами. Кремний придает жидкотекучесть, пластичность при высоких температурах и уменьшает усадку. Из сплава АЛ2, содержащего 10—13% кремния, изготовляют подавляющее большинство алюминиевых отливок, не требующих термической обработки. Недостаком сплава является образование пористости и усадочных раковин и плохая обрабатываемость режущим инструментом.

Из сплавов АЛ4, АЛ4В изготовляют особо сложные тонкостенные герметичные отливки. Для повышения твердости и антикоррозионных свойств эти отливки подвергают термообработке (искусственному старению) в течение 8 ч при температуре 175° С.

Сплавы группы алюминий — магний обладают высокими механическими и антикоррозионными свойствами. Особенно прочным является сплав АЛ13. Однако получение отливок из алюминиево-магниевых сплавов требует применения сложной технологии. Сплавы с содержанием магния более 8% во избежание самовоспламенения плавят с применением флюсов. Существенным недостатком алюминиево-магниевых сплавов является пониженная жидкотекучесть и пластичность и повышенная усадка при высоких температурах.

Из сплавов на основе группы алюминий — кремний — медь наибольшее распространение получили АЛ3 и АЛ10В. Присадка меди повышает механические свойства, но понижает его устойчивость против коррозии и ухудшает литейные свойства.

Сплав группы алюминий — цинк АЛ11 имеет пониженную антикоррозионную устойчивость и является самозакаливающимся. Однако цинк повышает жидкотекучесть и уменьшает прилипание сплава к пресс-форме.

Общим недостатком алюминиевых сплавов является их склонность прилипать к поверхности оформляющей полости и к стержням. Прилипание наблюдается в местах наибольшего разогрева рабочей полости пресс-формы.

Уменьшает прилипание сплавов примесь железа. Допускается содержание железа не более 1,5%, так как увеличение его понижает механические и антикоррозионные свойства.

Химический состав алюминиевых сплавов установлен ГОСТ 2685—63.

Кристаллизация алюминиевых сплавов, особенно сплава АЛ2, сопровождается образованием концентрированных усадочных раковин. Учитывая то, что в условиях литья под давлением питание отливки затруднено, в конструкциях деталей, отливаемых из этих сплавов, не следует допускать значительных местных утолщений.

Сплавы на основе алюминия: область применения.

Сплавы на основе алюминия получили невероятно широкое распространение в самых разных отраслях промышленности. Алюминиевые сплавы с добавлением различных элементов, позволяют добиваться необходимых структурных и механических свойств металла, что делает его идеальным материалом для производства самых разных изделий.

К примеру, из алюминиевых сплавов категорий АД и АД-1 производят витражи, межкомнатные и офисные перегородки, трубопроводы, оконные рамы. Такие оконные и балконные рамы, к слову, за последние несколько лет получили довольно широкое распространение за счет свой низкой стоимости и хорошим эксплуатационным свойствам, во многом не уступающим пластиковым профилям для рам. Также алюминиевые сплавы данной категории широко используются в ювелирной промышленности (для изготовления бижутерии, корпусов для часов и т.д.), а также в судостроении.





Поделиться с друзьями:


Дата добавления: 2016-07-29; Мы поможем в написании ваших работ!; просмотров: 1092 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Слабые люди всю жизнь стараются быть не хуже других. Сильным во что бы то ни стало нужно стать лучше всех. © Борис Акунин
==> читать все изречения...

2192 - | 2114 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.01 с.