Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Пути потребления O2 в организме. Характеристика микросомальной ДЦ, ее сравнение с митохондриальной. Характеристика цитохромов P450, их функция




Тканевое дыхание - один из процессов диссимиляции, по сути это и есть биологическое окисление в тканях и клетках организма. В организме существует 3 пути потребления и утилизации кислорода:

1 путь - 90-95% O2 идет на митохондриальное окисление.

2 путь - 5-10% идет на микросомальное окисление (в печени при поступлении больших количеств токсинов - 40%).

3 путь - перекисное окисление (2-5%).

Микросомальная дыхательная цепь.

Микросомы (микрочастицы) - это замкнутые мембранные пузырьки (везикулы), образуемые из гладкой ЭПС при гомогенизации клетки. Как таковых микросом не существует.

Микросомальное окисление - это окисление, протекающее на гладкой ЭПС нормальной неразрушенной клетки.

Наиболее интенсивно микросомальное окисление протекает в печени и надпочечниках, а также в местах контакта с внешней средой, в коже, почках, легких, селезенке.

ЭПС - 2-й слой мембран, ассоциированных с 3-мя основными классами ферментов:

1) оксидоредуктазы;

2) трансферазы;

3) гидролазы.

Главная функция этих ферментов - реакции детоксикации.

Микросомальное окисление осуществляется с помощью одноименной ДЦ, которая представляет собой систему переносчиков протонов и электронов с НАД или НАДФ на кислород.

Существует 2 варианта микросомальной ДЦ:

1) НАДФ ----> ФП ---> b5 ---> p450 ---> O2

2) НАД ----> ФП ----> b5-----

Цитохром b5 одной цепи может передавать свои электроны на цитохром b5 другой цепи, а также на цитохром p450.

Микросомальное окисление можно записать и так:

RH + НАД (НАДФ).H2 + O2 ---> ROH + НАД (НАДФ) + HOH

схема

FP - флавопротеид, включающий ФАД и Fe-белок, содержащий негеминовое железо.

P450 - восстановленный CO-комплекс, который имеет max поглощения при длине волны = 450 нм.

Многие гидрофобные вещества организма обладают токсичностью, за счет того, что растворяются в клеточных мембранах и тем самым разрушают их.

Задачей организма является перевод этих гидрофобных соединений в гидрофильные, которые легче выводятся почками. Это осуществляется микросомальным окислением.

Таким образом, основная роль микросомальной ДЦ заключается в осуществлении реакций синтеза с участием кислорода (в схеме видно образование фенола из бензола (гидроксилирование)).

Для связывания второго атома кислорода необходим косубстрат, каковым является аскорбат (Vit C), кторый также отдает 2H+ на синтез H2O. Для обеспечения реакций детоксикации необходимо большое количество Vit C в составе косубстрата: реакции детоксикации протекают по механизму гидроксилирование гетероциклических и алифатических соединений (ксенобиотики), поступающие из вне.

Реакции детоксикации могут привести к снижению концентрации токсических веществ или может возникнуть летальный синтез.

Роль микросомального окисления состоит в биосинтезе Vit D, кортикостероидов, коллагена, тирозина, катехоламинов.

- Реакции деалкилирования - отщепление алкильной группы;

- реакции окисления спиртов, альдегидов, кетонов, нитросоединений;

- реакции разрыва кольца ароматических соединений;

- реакции восстановления, когда идет сброс протов;

- реакции десатурации (перевод насыщенных ЖК в ненасыщенные).

В 70-е годы было показано, что микросомальная и митохондриальная дыхательные цепи взаимодействуют друг с другом через цитохром b5.

В условиях интоксикации (этанол, барбитураты) происходит ингибирование 1 комплекса митохондриальной ДЦ.

НАД ---> ФП -/-> Q ---> b ---> c1 ---> c ---> aa3 ---> ½ O2

Окисление НАД.Н2 не происходит и он накапливается. В межмембранном пространстве имеется цитохром b5, который принимает электроны с НАД.Н М/Х ДЦ и перебрасывает их на микросомальную ДЦ и тем самым угроза энергетического голода устраняется.

Таким образом ц. b5 - фермент, компонент микросомальной ДЦ, который обеспечивает межмембранный митохондриально-микросомальный перенос электронов.

Сходства и различие митохондриальной и микросомальной дыхательных цепей.

1. Сходства: а) они имеют одинаковые начало и конец и одинаковую суммарную разность потенциалов (а значит одинаковый градиент энергии в начале и конце);

б) имеют одинаковые переносчики: НАД, ФП, цитохромы.

2. Различия: а) по локализации;

б) микросомальная ДЦ короче и электроны на последнем переносчике М/С цепи более энергизированы и спосбны активировать кислород;

в) будучи активным кислород способен внедряться в структуру многих молекул, т. е. используется с «пластическими» целями (ФЕН---> ТИР). В то время как в М/Х ДЦ кислород - всего лишь конечный акцептор электронов и используется в энергетических целях;

г) в процессе переноса электронов в М/Х ДЦ их энергия депонируется в форме АТФ. В М/С ДЦ - депонирование энергии ни в каком виде не происходит;

д) М/С окисление - современная интерпретация теории БахаЭнслера. М /Х окисление - современный вариант теории Палладина-Виланда.

 

Перекисное окисление. Механизм образования активных форм кислорода. Роль перекисных процессов в норме и при патологии. Общее представление о ПОЛ (НЭЖК → R· → диеновые коньюгаты → гидроперекиси → МДА). Способы оценки активности ПОЛ.

Перекисное окисление и антиоксидантная защита.

Еще Мечников, изучая фагацитоз утверждал, что фагоцитарное действие лейкоцитов осуществляется за счет перекисных процессов.

Перекисное окисление - это третий путь утилизации вдыхаемого кислорода (от 2 до 5%).

Кислород сам по себе является парамагнитным элементом (это было установлено методом молекулярных орбиталей) т. к. имеет на внешнем слое 2 неспаренных электрона.

--------- _ _.

--------- O2; O2 + e ---> O2, т. е. в реакциях перекисного

--- окисления происходит одноэлектронное восстановление

кислорода.

--------- _.

--------- O2 - супероксидный ион-радикал, более активная форма

--- кислорода.

Возможна еще одна активная форма кислорода:

--------- _

--------- O2 - синглетный кислород.

_. _

O2 и O2 - инициируют образование большого количества радикалов, по цепному механизму:

_. _.

O2 + H+ ---> HO2 - гидропероксидный радикал

_. _.

HO2 + H+ + O2 ----> H2O2 + O2.

H2O2 + Fe2+ ----> Fe3+ + OH- + OH (пероксидный радикал).

_.

O2 + Fe3+ ---> O2 + Fe2+

В процессе взаимодействия этих радикалов с веществом поражаются наиболее уязвимые места клеток: ненасыщенные ЖК фосфолипидов мембран, они «выжигаются» в результате чего мембрана делается более ригидной и следовательно изменяется ответная реакция клетки.

В нормальных условиях перекисное окисление регулирует агрегатное состояние мембран, лежит в основе тканевой адаптации. (Это играет роль в стрессовых ситуациях, когда клетка т. о. защищается от избытка гормонов).

При всех видах патологии активность перекисных процессов возрастает, и является инструментом повреждения мембраны. В ней образуются мощные ионные каналы, через которые входят ионы Na+, K+ и др. и содержимое клетки как бы вываливается и она гибнет.

OH. - радикал взаимодействует с ДНК и РНК, вызывая возникновение генных мутаций и провоцируя канцерогенез.

Перекисные процессы инициируются в структуре нуклеиновых кислот.

 





Поделиться с друзьями:


Дата добавления: 2016-07-29; Мы поможем в написании ваших работ!; просмотров: 499 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Есть только один способ избежать критики: ничего не делайте, ничего не говорите и будьте никем. © Аристотель
==> читать все изречения...

2206 - | 2162 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.007 с.