Тесная топографическая связь гладкого ЭПР с отложениями гликогена в гиалоплазме различных клеток говорит о его участии в метаболизме углеводов, В клетках печени, в мышечных волокнах гликоген откладывается в зонах, свободных от гранулярных цистерн ЭПР, но богатых пузырьками и канальцами гладкого ЭПР. В печени часто увеличение зон гладкого ЭПР связано с рядом патологических процессов в клетках. Так, при отравлениях, при действии различных канцерогенов или ядовитых веществ, при действии больших доз гормональных препаратов клетки печени теряют характерную для них базофилию цитоплазмы, в них падает содержание РНК и в цитоплазме появляются оксифильные зоны. В электронном микроскопе эти зоны представлены скоплениями гладкого ЭПР Это явление связано с тем, что в этих местах происходят процессы деградации различных вредных веществ, процессы метаболической дезактивации, которые осуществляются целым рядом окислительных ферментов, из которых наиболее известен белок, называемый цитохром. Разросшийся гладкий ЭПР в клетках печени после удаления токсического вещества уничтожается, вероятно, с помощью лизосом.
Накопление ионов кальция в мышечной ткани.
Способность аЭПС к накоплению ионов Са?+ обусловлена наличием: (1) кальциевого насоса в ее мембране, который обеспечивет транспорт этих ионов из гиалоплазмы внутрь цистерн аЭПС; (2) кальций-связывающих белков (кальсеквестрина в мышечных клетках, кальрети кулина - преимущественно в немышечных и др.), которые в просвете цистерн образуют комплекс с ионами Са2+ и (3) кальциевых каналов в мембране аЭПС, которые осуществляют выведение Са2+ в гиалоплаз-му. Механизмы действия кальциевых каналов неодинаковы в клетках разных типов. Функция накопления ионов Са2+ особенно выражена в мышечных клетках, в которых специализированная аЭПС (именуемая саркоплазматической сетью) обеспечивает мышечное сокращение путем накопления и выделения значительных количеств ионов Са2+, связывающихся с особыми белками. В поперечно-полосатых мышцах вакуоли и каналы гладкого ЭПР (саркоплазматический ретикулум) окружают каждую миофибриллу. Здесь ЭПР выполняет специальную функцию депонирования ионов кальция. В присутствии АТФ он может активно поглощать и накапливать ионы кальция, что приводит к расслаблению мышечного волокна. Белки кальциевого насоса являются интегральными белками мембран саркоплазматического ретикулума.
Рибосомы.
Рибосома — важнейший немембранный органоид живой клетки сферической или слегка эллипсоидной формы, диаметром 100—200 ангстрем, состоящий из большой и малой субъединиц. Рибосомы служат для биосинтеза белка из аминокислот по заданной матрице на основе генетической информации, предоставляемой матричнойРНК, или мРНК. Этот процесс называется трансляцией.
Рибосомы – это сложные рибонуклеопротеидные частицы, в состав которых входит множество молекул индивидуальных (неповторенных) белков и несколько молекул РНК. Полная, работающая рибосома, состоит из двух неравных субъединиц, которые легко обратимо диссоциируют на большую субъединицу и малую. Форма и детальные очертания рибосом из разнообразных организмов и клеток, включая как прокариотические, так и эукариотические, поразительно похожи, хотя и отличаются рядом деталей.
История изучения.
Рибосомы впервые были описаны как уплотненные частицы, или гранулы, клеточным биологом румынского происхождения Джорджем Паладе в середине 1950-х годов. В 1974 г. Паладе, Клод и Кристиан Де Дюв получили Нобелевскую премию по физиологии и медицине «за открытия, касающиеся структурной и функциональной организации клетки». Термин "рибосома" был предложен Ричардом Робертсом в 1958 вместо "рибонуклеобелковая частица микросомальной фракции". Биохимические и мутационные исследования рибосомы начиная с 1960-х позволили описать многие функциональные и структурные особенности рибосомы. В начале 2000-х появились атомные структуры отдельных субъединиц, а также полной рибосомы, связанной с различными субстратами, которые позволили понять механизм декодинга (распознавания антикодона тРНК, комплементарного кодону мРНК) и детали взаимодействий между рибосомой, антибиотиками, тРНК и мРНК.