Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Определение предела функции




 

Число называется пределом функции при , если для любого сколь угодно малого найдется , такое что для всех значений , удовлетворяющих неравенству , выполнено неравенство .

При этом пишут или . В символах математического анализа определение может быть записано так:

.

Выше приведено определение для случая конечных значений и . Оно может быть переделано для случаев, когда или обращаются в бесконечность . При этом соответствующие неравенства должны быть заменены на неравенства типа , если , ,если , , если и т.п.

Переменная величина называется бесконечно малой величиной при , если .

Пусть , где – конечные числа, – любое конечное число или бесконечность.

Теоремы о пределах:

1. .

2. .

3. Если .

4. Пусть – конечное число. Тогда:

а)

б)

в) .

5. Пусть , тогда . ●

Функция называется непрерывной в точке , если она определена в этой точке и . Для непрерывной функции возможен переход к пределу под знаком функции.

Предельные переходы, содержащие нуль или бесконечность, при кратко можно записать так:

, (1)

где выражение, заключенное в квадратные скобки, понимается как предельное значение. Выражения вида:

, (2)

─ называются неопределенностями, что означает, что нельзя дать ответ, используя правила (1), Например, рассмотрим три функции: при . Отношение любых двух функций из указанных трех приводит к неопределенности . Однако, пределы этих отношений различны, например:

, , .

Неопределенности (2) всегда можно перевести из одной в другую. Кроме указанных выражений неопределенностями являются предельные выражения:

.

При вычислении пределов сначала подставляется предельное значение переменной. Если выполнены условия теорем, то сразу получаем ответ. Если при подстановке получается неопределенность, то следует предварительно преобразовать выражение, а затем подставить предельное значение.

Рассмотрим несколько примеров на вычисление пределов.

1. .

2. .

3. .

4. .

5. .

6. .

7. .

8. .

9. .

10. .

11. .

12. .

13.

В примерах 1─3,6─8 можно сразу записать ответ. В остальных примерах первая подстановка приводит к неопределенности, поэтому: сначала проводим преобразование. Так в примере 13 мы умножили числитель и знаменатель на сопряженное выражение, что позволило затем сократить дробь. Обратите внимание, что выражение , и это позволило вынести множитель за знак предела.

Проанализировав решения примеров 9–11, замечаем, что при вычислении пределов типа , приходим к пределу отношения членов со старшими степенями. Окончательный ответ зависит от соотношения степеней. Аналогичная ситуация и для выражений, содержащих дробные степени или радикалы.

Например, вычисляя , приходим к неопределенности . Выбрав в числителе и знаменателе слагаемые со старшими степенями . получаем решение:

.

Односторонние пределы

 

Если , оставаясь больше (или меньше) , то такие пределы называются односторонними пределами или пределами справа (слева). Стремление переменной к предельному значению слева будем записывать при стремлении справа , а сами предельные значения функции или . При или также имеем односторонние пределы: и . Сравните два предела

, .

Как указано в первом разделе: функция называется непрерывной в точке , если она определена в этой точке и . Если функция не является непрерывной в точке , то говорят, что функция имеет разрыв в точке . Разрывы функции имеют три типа и связаны с поведением функции слева и справа от точки разрыва.

1. Устранимый разрыв. Существуют левосторонний и правосторонний пределы, оба предела конечны, равны между собой, а функция не определена в точке :

.

2. Разрыв первого рода (скачок). Существуют левосторонний и правосторонний пределы, оба предела конечны, но они не равны между собой.

3. Разрыв второго рода. Один из пределов или оба обращаются в бесконечность или не существуют.

Все элементарные функции непрерывны в области своего определения.

Пример 1. Исследовать поведение функции на границе ее области определения.

Решение. .

Определим пределы функции в граничных точках и при :

Пример 2. Исследовать поведение функции на границе ее области определения.

Решение. .

Определим пределы функции в граничных точках и при . Заметим, что каждая из точек граничной точкой является дважды. Поэтому в этих точках вычислим односторонние пределы:

 





Поделиться с друзьями:


Дата добавления: 2016-09-06; Мы поможем в написании ваших работ!; просмотров: 346 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Лучшая месть – огромный успех. © Фрэнк Синатра
==> читать все изречения...

2230 - | 2117 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.012 с.