Система линейных уравнений имеет вид:
Здесь и ‑ заданные, а ‑ неизвестные действительные числа. Используя понятие произведения матриц, можно переписать систему в виде:
AX = B
где - матрица, состоящая из коэффициентов при неизвестных, которая называется матрицей системы, , - векторы-столбцы, составленные соответственно из неизвестных xj и из свободных членов bi.
Упорядоченная совокупность вещественных чисел называется решением системы, если в результате подстановки этих чисел вместо соответствующих переменных каждое уравнение системы обратится в арифметическое тождество.
Система называется совместной, или разрешимой, если она имеет по крайней мере одно решение. Система называется несовместной, или неразрешимой, если она не имеет решений.
Матрица
,
образованная путем приписывания справа к матрице A столбца свободных членов, называется расширенной матрицей системы.
Вопрос о совместности системы решается следующей теоремой.
Теорема Кронекера-Капелли.
Система линейных уравнений совместна тогда и только тогда, когда ранги матриц A и совпадают, т.е. .
Система имеет единственное решение только в том случае, когда
. При этом число уравнений - не меньше числа неизвестных ; если , то уравнений являются следствиями остальных. Если , то система является неопределенной.
Для решения произвольной системы линейных уравнений нужно уметь решать системы, в которых число уравнений равно числу неизвестных, - так называемые системы крамеровского типа:
Эти системы решаются одним из следующих способов:
1) методом Гаусса, или методом исключения неизвестных;
2) по формулам Крамера;
3) матричным методом.
Пример 17. Исследовать систему уравнений и решить ее, если она совместна:
Решение. Выписываем расширенную матрицу системы:
.
Вычислим ранг основной матрицы системы. Очевидно, что, например, минор второго порядка в левом верхнем углу ; содержащие его миноры третьего порядка равны нулю:
, .
Следовательно, ранг основной матрицы системы равен 2, т.е. . Для вычисления ранга расширенной матрицы рассмотрим окаймляющий минор
,
значит, ранг расширенной матрицы . Поскольку , то система несовместна.
А. Метод Гаусса
Исторически первым, наиболее распространенным методом решения систем линейных уравнений является метод Гаусса, или метод последовательного исключения неизвестных. Сущность этого метода состоит в том, что посредством последовательных исключений неизвестных, данная система превращается в ступенчатую (в частности, треугольную) систему, равносильную данной. При практическом решении системы линейных уравнений методом Гаусса удобнее приводить к ступенчатому виду не саму систему уравнений, а расширенную матрицу этой системы, выполняя элементарные преобразования над ее строками. Последовательно получающиеся в ходе преобразования матрицы обычно соединяют знаком эквивалентности.
Пример 18. Решить систему уравнений методом Гаусса:
Решение. Выпишем расширенную матрицу данной системы
и произведем следующие элементарные преобразования над ее строками:
а) из ее второй и третьей строк вычтем первую, умноженную соответственно на 3 и 2:
;
б) третью строку умножим на (- 5) и прибавим к ней вторую:
.
В результате всех этих преобразований данная система приводится к треугольному виду:
Из последнего уравнения находим . Подставляя это значение во второе уравнение, имеем . Далее из первого уравнения получим .
Б. Формулы Крамера
Назовем столбцы матрицы следующим образом: первый столбец - , второй столбец - , и т.д., последний столбец - . Тогда матрицу можно записать в виде .
Составим дополнительных матриц:
, , …, ,
и вычислим их определители и определитель исходной матрицы:
, , , …, .
Тогда значения неизвестных вычисляются по формулам Крамера:
, , …, .
Правило Крамера дает исчерпывающий ответ на вопрос о совместности системы: если главный определитель системы отличен от нуля, то система имеет единственное решение, определяемое по вышеприведенным формулам.
Если главный определитель системы и все вспомогательные определители равны нулю, то система имеет бесчисленное множество решений.
Если главный определитель системы , а хотя бы один вспомогательный определитель отличен от нуля, то система несовместна.
Пример 19. Решить систему уравнений методом Крамера.
, .
Тогда
, , .
Вычисляя определители этих матриц, получаем , , , .
И по формулам Крамера находим: , , .
В. Матричный метод
Теперь, рассмотрим матричное уравнение . Если у матрицы существует обратная матрица , то, умножая матричное уравнение на слева, получим:
.
По определению обратимости матрицы и по свойству единичной , получаем:
.
Пример 20. Решить систему уравнений с помощью обратной матрицы.
Имеем:
, .
Вычислим определитель матрицы , разлагая по первой строке:
Значит, обратная матрица существует. Вычислим алгебраические дополнения элементов матрицы:
, ,
, ,
, ,
, ,
.
Тогда решение системы получается умножением обратной матрицы на столбец свободных членов