Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Системы линейных уравнений




Система линейных уравнений имеет вид:

Здесь и ‑ заданные, а ‑ неизвестные действительные числа. Используя понятие произведения матриц, можно переписать систему в виде:

AX = B

где - матрица, состоящая из коэффициентов при неизвестных, которая называется матрицей системы, , - векторы-столбцы, составленные соответственно из неизвестных xj и из свободных членов bi.

Упорядоченная совокупность вещественных чисел называется решением системы, если в результате подстановки этих чисел вместо соответствующих переменных каждое уравнение системы обратится в арифметическое тождество.

Система называется совместной, или разрешимой, если она имеет по крайней мере одно решение. Система называется несовместной, или неразрешимой, если она не имеет решений.

Матрица

,

образованная путем приписывания справа к матрице A столбца свободных членов, называется расширенной матрицей системы.

Вопрос о совместности системы решается следующей теоремой.

Теорема Кронекера-Капелли.

Система линейных уравнений совместна тогда и только тогда, когда ранги матриц A и совпадают, т.е. .

Система имеет единственное решение только в том случае, когда
. При этом число уравнений - не меньше числа неизвестных ; если , то уравнений являются следствиями остальных. Если , то система является неопределенной.

Для решения произвольной системы линейных уравнений нужно уметь решать системы, в которых число уравнений равно числу неизвестных, - так называемые системы крамеровского типа:

Эти системы решаются одним из следующих способов:

1) методом Гаусса, или методом исключения неизвестных;

2) по формулам Крамера;

3) матричным методом.

Пример 17. Исследовать систему уравнений и решить ее, если она совместна:

Решение. Выписываем расширенную матрицу системы:

.

Вычислим ранг основной матрицы системы. Очевидно, что, например, минор второго порядка в левом верхнем углу ; содержащие его миноры третьего порядка равны нулю:

, .

Следовательно, ранг основной матрицы системы равен 2, т.е. . Для вычисления ранга расширенной матрицы рассмотрим окаймляющий минор

,

значит, ранг расширенной матрицы . Поскольку , то система несовместна.

 

А. Метод Гаусса

Исторически первым, наиболее распространенным методом решения систем линейных уравнений является метод Гаусса, или метод последовательного исключения неизвестных. Сущность этого метода состоит в том, что посредством последовательных исключений неизвестных, данная система превращается в ступенчатую (в частности, треугольную) систему, равносильную данной. При практическом решении системы линейных уравнений методом Гаусса удобнее приводить к ступенчатому виду не саму систему уравнений, а расширенную матрицу этой системы, выполняя элементарные преобразования над ее строками. Последовательно получающиеся в ходе преобразования матрицы обычно соединяют знаком эквивалентности.

Пример 18. Решить систему уравнений методом Гаусса:

Решение. Выпишем расширенную матрицу данной системы

и произведем следующие элементарные преобразования над ее строками:

а) из ее второй и третьей строк вычтем первую, умноженную соответственно на 3 и 2:

;

б) третью строку умножим на (- 5) и прибавим к ней вторую:

.

В результате всех этих преобразований данная система приводится к треугольному виду:

Из последнего уравнения находим . Подставляя это значение во второе уравнение, имеем . Далее из первого уравнения получим .

 

Б. Формулы Крамера

Назовем столбцы матрицы следующим образом: первый столбец - , второй столбец - , и т.д., последний столбец - . Тогда матрицу можно записать в виде .

Составим дополнительных матриц:

, , …, ,

и вычислим их определители и определитель исходной матрицы:

, , , …, .

Тогда значения неизвестных вычисляются по формулам Крамера:

, , …, .

Правило Крамера дает исчерпывающий ответ на вопрос о совместности системы: если главный определитель системы отличен от нуля, то система имеет единственное решение, определяемое по вышеприведенным формулам.

Если главный определитель системы и все вспомогательные определители равны нулю, то система имеет бесчисленное множество решений.

Если главный определитель системы , а хотя бы один вспомогательный определитель отличен от нуля, то система несовместна.

Пример 19. Решить систему уравнений методом Крамера.

, .

Тогда

, , .

Вычисляя определители этих матриц, получаем , , , .

И по формулам Крамера находим: , , .

 

В. Матричный метод

Теперь, рассмотрим матричное уравнение . Если у матрицы существует обратная матрица , то, умножая матричное уравнение на слева, получим:

.

По определению обратимости матрицы и по свойству единичной , получаем:

.

Пример 20. Решить систему уравнений с помощью обратной матрицы.

Имеем:

, .

Вычислим определитель матрицы , разлагая по первой строке:

Значит, обратная матрица существует. Вычислим алгебраические дополнения элементов матрицы:

, ,

, ,

, ,

, ,

.

Тогда решение системы получается умножением обратной матрицы на столбец свободных членов

 





Поделиться с друзьями:


Дата добавления: 2016-09-06; Мы поможем в написании ваших работ!; просмотров: 363 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Свобода ничего не стоит, если она не включает в себя свободу ошибаться. © Махатма Ганди
==> читать все изречения...

2338 - | 2092 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.011 с.