Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Закон сохранения энергии. Внутренняя энергия




полная механическая энергия замкнутой системы тел, между которыми действуют только консервативные силы, остаётся постоянной. Если в замкнутой системе действуют также неконсервативные силы, то полная механическая энергия системы не сохраняется . Вну́трення эне́ргия тела — это сумма энергий молекулярных взаимодействий и тепловых движений молекулы. Внутренняя энергия является однозначной функцией состояния системы.

 

21/Момент импульса. /Его сохранение

Моментом импульса частицы относительно некоторой точки О называется векторная (псевдовекторная) величина . Свойства: 1) Зависит от выбора точки О; 2) Модуль L=rpsin = ; 3) L – плечо, . Моментом импульса относительно некоторой оси называют проекцию момента импульса на эту ось. При движении частицы с постоянной скоростью момент импульса сохраняется. Закон сохранения момента импульса.

Скорость изменения момента импульса механической системы = сумме моментов внешних сил, действующих на систему . Если система замкнута (), то выполняется закон сохранения момента импульса: момент импульса замкнутой системы материальных точек остаётся постоянным. Закон сохранения момента импульса выполняется также для незамкнутых систем, если суммарный момент внешних сил = 0.

 

Движение в центральном поле сил.

Пусть частица массы m движется в центральном силовом поле. Момент сил, действующих на частицу момент импульса частицы . В силу сохранения , направление движения частицы должно происходить перпендикулярно направлению . Частица совершает плоское движение. Для описания движения воспользуемся полярной системой координат: , – проекция моментов на ось Z сохраняется. Т.к. силовое поле является центральным, то оно консервативное, значит, для него можно найти выражение для потенциальной энергии U. При движении в консервативном силовом поле сохраняется полная механическая энергия. , таким образом, задача по движению частицы в центральном силовом поле свелась к решению системы 2-ух дифференциальных уравнений 1-ого порядка. При этом мы используем момент энергии и момент сил.

 

 

Момент инерции.

Момент инерции определяется как , если распределение массы равномерно, то заменяется на – элементарный объём, – плотность вещества. .

Момент инерции:

1) однородного тонкого стержня массы , длины относительно оси, проходящей через центр масс и перпендикулярной стержню:

2) однородного тонкого стержня массы , длины относительно оси, проходящей через один из концов стержня:

3) тонкого кольца массы , радиуса R относительно оси симметрии, перпендикулярной плоскости кольца:

4) однородного диска (цилиндра) массы , радиуса R, высоты h относительно оси симметрии, перпендикулярной основанию: .

Затухающие колебания.

В реальных физических системах всегда действуют силы сопротивления, в результате действия которых амплитуда колебаний с течением времени убывает. рассмотрим движение тела в вязкой среде, когда силы сопротивления противоположны скорости движения тела: , – коэффициент сопротивления. . Подставим вместо – дифференциальное уравнение 2-ого порядка сводится к квадратному алгебраическому уравнению . Колебательный процесс возможен, если силы сопротивления достаточно малы. Это означает, что должно выполняться условие . В этом случае . Следовательно, общим решением нашего уравнения будет функция – кинематический закон затухающих колебаний. Можно сказать, что наблюдаются гармонические колебания с частотой , амплитуда же колебаний убывает по экспоненциальному закону . Скорость затухания определяется величиной коэффициента затухания . Затухание характеризуется также декрементом затухания, который показывает во сколько раз уменьшилась амплитуда колебаний за время, равное периоду : . Логарифм этого выражения называют логарифмическим декрементом затухания: . В затухающих системах используется также такая величина как добротность: .

 

40/Вынужденными называются такие колебания, которые возникают в колебательной системе под действием внешней периодически изменяющейся силы (вынуждающая сила). Пусть вынуждающая сила меняется по гармоническому закону . С учётом сил сопротивления и упругости получим динамическое уравнение движения системы: Предположим, что система совершает гармонические колебания с частотой , отставая по фазе от вынуждающей силы на . Находим 1-ую и 2-ую производные и подставляем в динамическое уравнение движения системы: . В левой части стоит сумма 3-х колебаний одинаковой частоты, сдвинутой по фазе и с различными амплитудами. При фаза результирующих колебаний должна равняться 0. С помощью векторной диаграммы определили амплитуду результирующих колебаний .

Начальная фаза определена условием: .

При некоторой определённой для данной системы частоте , амплитуда достигает максимального значения. Колебательная система оказывается особенно отзывчивой на действие вынуждающей силы при этой частоте. Это явление называется резонансом, а частота – резонансной частотой. , .

 

10.РАБОТА И ПОТЕНЦИАЛЬНАЯ ЭНЕРГИЯ. F=-gradU.

Рассмотрим движение материальной точки в некотором силовом поле F. Если под действием силы F материальная точка прошла dS. ,dS) - работа силы F на пути dS. Для того, чтобы определить А сил поля, не на бесконечно-малом, а на конечном пути, нужно разбить этот путь на бесконечно-малые участки dS.Работа сил поля при переносе частиц из одной точки в другую не зависит от траектории, а определяется лишь положением начальной и конечной точек. Величина U, т.е. взятая с обратным знаком A при переходе частицы из точки О в точку Р называют потенциальной энергией частицы в точке Р. Работа силового поля А12 при переходе тела из точки А12=U1-U2, где U1 и U2 значения потенциальной энергии в этих точках.dA=-dU; dA=FdS; F=-dU/dS;В общем случае:F=-gradU

30/Движение твёрдого тела.

Движение твёрдого тела можно представить как результат суммы поступательного (любая связанная с телом прямая перемещается параллельно самой себе, т.е. все точки тела движутся по одинаковым траекториям) и вращательного (все точки тела движутся по окружностям, центры которых лежат на одной прямой, называемою осью вращения; все окружности лежат в параллельных плоскостях и перпендикулярно оси вращения) движений (неоднозначно). Произвольная точка твёрдого тела испытывает перемещение , причём для всех точек тела одно и то же. Разделив на соответствующий промежуток времени , получим скорость точки: . – одинаковая для всех точек скорость поступательного движения, – скорость, обуславливаемая вращением (различная в разных точках). – радиус-вектор данной точки, – угловая, независящая от выбора точки О скорость. Следовательно, . Любое твёрдое тело можно представить как совокупность материальных точек массы , расстояние между которыми неизменно. Каждая материальна точка движется под действием, как внутренних сил, так и внешних. Движение определяется 2-ым законом Ньютона. . .Центр масс твёрдого тела движется таким же образом, как двигалась бы материальная точка массы под действием всех внешних сил. Движение твёрдого тела определяется 2-мя (3-мя) уравнениями:

1)

2) ;

3) – при плоском движении





Поделиться с друзьями:


Дата добавления: 2016-04-04; Мы поможем в написании ваших работ!; просмотров: 945 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Неосмысленная жизнь не стоит того, чтобы жить. © Сократ
==> читать все изречения...

2312 - | 2018 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.242 с.