Спецификации Institute of Electrical and Electronics Engineers IEEE802 определяют стандарты для физических компонентов сети. Эти компоненты – сетевая карта (Network Interface Card – NIC) и сетевой носитель (network media), которые относятся к физическому и канальному уровням модели OSI. Спецификации IEEE802 определяют механизм доступа адаптера к каналу связи и механизм передачи данных. Стандарты IEEE802 подразделяют канальный уровень на подуровни:
- Logical Link Control (LLC) – подуровень управления логической связью;
- Media Access Control (MAC) – подуровень управления доступом к устройствам.
Спецификации IEEE 802 делятся на двенадцать стандартов:
802.1
Стандарт 802.1 (Internetworking – объединение сетей) задает механизмы управления сетью на MAC – уровне. В разделе 802.1 приводятся основные понятия и определения, общие характеристики и требования к локальным сетям, а также поведение маршрутизации на канальном уровне, где логические адреса должны быть преобразованы в их физические адреса и наоборот.
802.2
Стандарт 802.2 (Logical Link Control – управление логической связью) определяет функционирование подуровня LLC на канальном уровне модели OSI. LLC обеспечивает интерфейс между методами доступа к среде и сетевым уровнем.
802.3
Стандарт802.3 ( Ethernet Carrier Sense Multiple Access with Collision Detection – CSMA/CD LANs Ethernet – множественный доступ к сетям Ethernet с проверкой несущей и обнаружением конфликтов) описывает физический уровень и подуровень MAC для сетей, использующих шинную топологию и коллективный доступ с прослушиванием несущей и обнаружением конфликтов. Прототипом этого метода является метод доступа стандарта Ethernet (10BaseT, 10Base2, 10Base5). Метод доступа CSMA/CD. 802.3 также включает технологии Fast Ethernet (100BaseTx, 100BaseFx, 100BaseFl).
100Base-Tx – двухпарная витая пара. Использует метод MLT-3 для передачи сигналов 5-битовых порций кода 4В/5B по витой паре, а также имеется функция автопереговоров (Auto-negotiation) для выбора режима работы порта.
100Base-T4 – четырехпарная витая пара. Вместо кодирования 4B/5В в этом методе используется кодирование 8B/6T.
100BaseFx – многомодовое оптоволокно. Эта спецификация определяет работу протокола Fast Ethernet по многомодовому оптоволокну в полудуплексном и полнодуплексном режимах на основе хорошо проверенной схемы кодирования и передачи оптических сигналов, использующейся уже на протяжении ряда лет в стандарте FDDI. Как и в стандарте FDDI, каждый узел соединяется с сетью двумя оптическими волокнами, идущими от приемника (Rx) и от передатчика (Tx).
Этот метод доступа используется в сетях с общей шиной (к которым относятся и радиосети, породившие этот метод). Все компьютеры такой сети имеют непосредственный доступ к общей шине, поэтому она может быть использована для передачи данных между любыми двумя узлами сети. Простота схемы подключения - это один из факторов, определивших успех стандарта Ethernet. Говорят, что кабель, к которому подключены все станции, работает в режиме коллективного доступа (multiply access – MA).
Метод доступа CSMA/CD определяет основные временные и логические соотношения, гарантирующие корректную работу всех станций в сети.
Все данные, передаваемые по сети, помещаются в кадры определенной структуры и снабжаются уникальным адресом станции назначения. Затем кадр передается по кабелю. Все станции, подключенные к кабелю, могут распознать факт передачи кадра, и та станция, которая узнает собственный адрес в заголовках кадра, записывает его содержимое в свой внутренний буфер, обрабатывает полученные данные и посылает по кабелю кадр-ответ. Адрес станции–источника также включен в исходный кадр, поэтому станция-получатель знает, кому нужно послать ответ.
802.4
Стандарт802.4 (Token Bus LAN – локальные сети Token Bus) определяет метод доступа к шине с передачей маркера, прототип – ArcNet.
При подключении устройств в ArcNet применяют топологию «шина» или «звезда». Адаптеры ArcNet поддерживают метод доступа Token Bus (маркерная шина) и обеспечивают производительность 2,5 Мбит/с. Этот метод предусматривает следующие правила:
- все устройства, подключённые к сети, могут передавать данные, только получив разрешение на передачу (маркер);
- в любой момент времени только одна станция в сети обладает таким правом;
- кадр, передаваемый одной станцией, одновременно анализируется всеми остальными станциями сети.
В сетях ArcNet используется асинхронный метод передачи данных (в сетях Ethernet и Token Ring применяется синхронный метод), т. е. передача каждого байта в ArcNet выполняется посылкой ISU (Information Symbol Unit – единица передачи информации), состоящей из трёх служебных старт/стоповых битов и восьми битов данных.
802.5
Стандарт802.5 (Token Ring LAN – локальные сети Token Ring) описывает метод доступа к кольцу с передачей маркера, прототип – Token Ring.
Сети стандарта Token Ring, так же как и сети Ethernet, используют разделяемую среду передачи данных, которая состоит из отрезков кабеля, соединяющих все станции сети в кольцо. Кольцо рассматривается как общий разделяемый ресурс, и для доступа к нему используется не случайный алгоритм, как в сетях Ethernet, а детерминированный, основанный на передаче станциями права на использование кольца в определенном порядке. Право на использование кольца передается с помощью кадра специального формата, называемого маркером, или токеном.
802.6
Стандарт802.6 (Metropolitan Area Network – городские сети) описывает рекомендации для региональных сетей.
802.7
Стандарт802.7 (Broadband Technical Advisory Group – техническая консультационная группа по широковещательной передаче) описывает рекомендации по широкополосным сетевым технологиям, носителям, интерфейсу и оборудованию.
802.8
Стандарт 802.8 (Fiber Technical Advisory Group – техническая консультационная группа по оптоволоконным сетям) содержит обсуждение использования оптических кабелей в сетях 802.3 – 802.6, а также рекомендации по оптоволоконным сетевым технологиям, носителям, интерфейсу и оборудованию, прототип – сеть FDDI (Fiber Distributed Data Interface).
Стандарт FDDI использует оптоволоконный кабель и доступ с применением маркера. Сеть FDDI строится на основе двух оптоволоконных колец, которые образуют основной и резервный пути передачи данных между узлами сети. Использование двух колец – это основной способ повышения отказоустойчивости в сети FDDI, и узлы, которые хотят им воспользоваться, должны быть подключены к обоим кольцам. Скорость сети до 100 Мб/с. Данная технология позволяет включать до 500 узлов на расстоянии 100 км.
802.9
Стандарт 802.9 (Integrated Voice and Data Network – интегрированные сети передачи голоса и данных) задает архитектуру и интерфейсы устройств одновременной передачи данных и голоса по одной линии, а также содержит рекомендации по гибридным сетям, в которых объединяют голосовой трафик и трафик данных в одной и той же сетевой среде.
802.10
В стандарте 802.10 (Network Security – сетевая безопасность) рассмотрены вопросы обмена данными, шифрования, управления сетями и безопасности в сетевых архитектурах, совместимых с моделью OSI.
802.11
Стандарт802.11 (Wireless Network – беспроводные сети) описывает рекомендации по использованию беспроводных сетей.
802.12
Стандарт802.12 описывает рекомендации по использованию сетей 100VG – AnyLAN со скоростью100Мб/с и методом доступа по очереди запросов и по приоритету (Demand Priority Queuing – DPQ, Demand Priority Access – DPA).
Технология 100VG – это комбинация Ethernet и Token-Ring со скоростью передачи 100 Мбит/c, работающая на неэкранированных витых парах. В проекте 100Base-VG усовершенствован метод доступа с учетом потребности мультимедийных приложений. В спецификации 100VG предусматривается поддержка волоконно-оптических кабельных систем. Технология 100VG использует метод доступа – обработка запросов по приоритету (demand priority access). В этом случае узлам сети предоставляется право равного доступа. Концентратор опрашивает каждый порт и проверяет наличие запроса на передачу, а затем разрешает этот запрос в соответствии с приоритетом. Имеется два уровня приоритетов – высокий и низкий.
Согласованный набор протоколов разных уровней, достаточный для организации межсетевого взаимодействия, называется стеком протоколов. Для каждого уровня определяется набор функций–запросов для взаимодействия с выше лежащим уровнем, который называется интерфейсом. Правила взаимодействия двух машин могут быть описаны в виде набора процедур для каждого из уровней, которые называются протоколами.
Существует достаточно много стеков протоколов, широко применяемых в сетях. Это и стеки, являющиеся международными и национальными стандартами, и фирменные стеки, получившие распространение благодаря распространенности оборудования той или иной фирмы. Примерами популярных стеков протоколов могут служить стек IPX/SPX фирмы Novell, стек TCP/IP, используемый в сети Internet и во многих сетях на основе операционной системы UNIX, стек OSI международной организации по стандартизации, стек DECnet корпорации Digital Equipment и некоторые другие.
Стеки протоколов разбиваются на три уровня:
- сетевые;
- транспортные;
- прикладные.
Сетевые протоколы
Сетевые протоколы предоставляют следующие услуги: адресацию и маршрутизацию информации, проверку на наличие ошибок, запрос повторной передачи и установление правил взаимодействия в конкретной сетевой среде. Ниже приведены наиболее популярные сетевые протоколы.
- DDP (Datagram Delivery Protocol – Протокол доставки дейтаграмм).Протокол передачи данных Apple, используемый в Apple Talk.
- IP (Internet Protocol – Протокол Internet). Протокол стека TCP/IP, обеспечивающий адресную информацию и информацию о маршрутизации.
- IPX (Internetwork Packet eXchange – Межсетевой обмен пакетами) в NWLink.Протокол Novel NetWare, используемый для маршрутизации и направления пакетов.
- NetBEUI (NetBIOS Extended User Interface – расширенный пользовательский интерфейс базовой сетевой системы ввода вывода). Разработанный совместно IBM и Microsoft, этот протокол обеспечивает транспортные услуги для NetBIOS.
Транспортные протоколы
Транспортные протоколы предоставляют следующие услуги надежной транспортировки данных между компьютерами. Ниже приведены наиболее популярные транспортные протоколы.
- ATP (Apple Talk Protocol – Транзакционный протокол Apple Talk) и NBP (Name Binding Protocol – Протокол связывания имен). Сеансовый и транспортный протоколы Apple Talk.
- NetBIOS ( Базовая сетевая система ввода вывода). NetBIOS Устанавливает соединение между компьютерами, а NetBEUI предоставляет услуги передачи данных для этого соединения.
- SPX (Sequenced Packet eXchange – Последовательный обмен пакетами) в NWLink.Протокол Novel NetWare, используемый для обеспечения доставки данных.
- TCP (Transmission Control Protocol – Протокол управления передачей).Протокол стека TCP/IP, отвечающий за надежную доставку данных.
Прикладные протоколы
Прикладные протоколы отвечают за взаимодействие приложений. Ниже приведены наиболее популярные прикладные протоколы.
- AFP (Apple Talk File Protocol – Файловый протокол Apple Talk).Протокол удаленного управления файлами Macintosh.
- FTP (File Transfer Protocol – Протокол передачи файлов). Протокол стека TCP/IP,используемый для обеспечения услуг по передачи файлов.
- NCP (NetWare Core Protocol – Базовый протокол NetWare). Оболочка и редиректоры клиента Novel NetWare.
- SNMP (Simple Network Management Protocol – Простой протокол управления сетью).Протокол стека TCP/IP, используемый дляуправления и наблюдения за сетевыми устройствами.
- HTTP (Hyper Text Transfer Protocol) – протокол передачи гипертекста и другие протоколы.
Набор многоуровневых протоколов, или как называют стек TCP/IP, предназначен для использования в различных вариантах сетевого окружения. Стек TCP/IP с точки зрения системной архитектуры соответствует эталонной модели OSI (Open Systems Interconnection – взаимодействие открытых систем) и позволяет обмениваться данными по сети приложениям и службам, работающим практически на любой платформе, включая Unix, Windows, Macintosh и другие.
Рис. 0.3 Соответствие семиуровневой модели OSI и четырехуровневой модели TCP/IP
Реализация TCP/IP фирмы Microsoft [1] соответствует четырехуровневой модели вместо семиуровневой модели, как показано на рис. 3.1. Модель TCP/IP включает большее число функций на один уровень, что приводит к уменьшению числа уровней. В модели используются следующие уровни:
- уровень Приложения модели TCP/IP соответствует уровням Приложения, Представления и Сеанса модели OSI;
- уровень Транспорта модели TCP/IP соответствует аналогичному уровню Транспорта модели OSI;
- межсетевой уровень модели TCP/IP выполняет те же функции, что и уровень Сети модели OSI;
- уровень сетевого интерфейса модели TCP/IP соответствует Канальному и Физическому уровням модели OSI.
Уровень Приложения
Через уровень Приложения модели TCP/IP приложения и службы получают доступ к сети. Доступ к протоколам TCP/IP осуществляется посредством двух программных интерфейсов (API – Application Programming Interface):
- Сокеты Windows;
- NetBIOS.
Интерфейс сокетов Windows, или как его называют WinSock, является сетевым программным интерфейсом, предназначенным для облегчения взаимодействия между различными TCP/IP – приложениями и семействами протоколов.
Интерфейс NetBIOS используется для связи между процессами (IPC – Interposes Communications) служб и приложений ОС Windows. NetBIOS выполняет три основных функции:
- определение имен NetBIOS;
- служба дейтаграмм NetBIOS;
- служба сеанса NetBIOS.
В таблице 3.1 приведено семейство протоколов TCP/IP.
Таблица 0.1
Название протокола | Описание протокола |
WinSock | Сетевой программный интерфейс |
NetBIOS | Связь с приложениями ОС Windows |
TDI | Интерфейс транспортного драйвера (Transport Driver Interface) позволяет создавать компоненты сеансового уровня. |
TCP | Протокол управления передачей (Transmission Control Protocol) |
UDP | Протокол пользовательских дейтаграмм (User Datagram Protocol) |
ARP | Протокол разрешения адресов (Address Resolution Protocol) |
RARP | Протокол обратного разрешения адресов (Reverse Address Resolution Protocol) |
IP | Протокол Internet(Internet Protocol) |
ICMP | Протокол управляющих сообщений Internet (Internet Control Message Protocol) |
IGMP | Протокол управления группами Интернета (Internet Group Management Protocol), |
NDIS | Интерфейс взаимодействия между драйверами транспортных протоколов |
FTP | Протокол пересылки файлов (File Transfer Protocol) |
TFTP | Простой протокол пересылки файлов (Trivial File Transfer Protocol) |
Уровень транспорта
Уровень транспорта TCP/IP отвечает за установления и поддержания соединения между двумя узлами. Основные функции уровня:
- подтверждение получения информации4
- управление потоком данных;
- упорядочение и ретрансляция пакетов.
В зависимости от типа службы могут быть использованы два протокола:
- TCP (Transmission Control Protocol – протокол управления передачей);
- UDP (User Datagram Protocol – пользовательский протокол дейтаграмм).
TCP обычно используют в тех случаях, когда приложению требуется передать большой объем информации и убедиться, что данные своевременно получены адресатом. Приложения и службы, отправляющие небольшие объемы данных и не нуждающиеся в получении подтверждения, используют протокол UDP, который является протоколом без установления соединения.