Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Прием 1. Замена площади сечения проводов участка сети эквивалентной




 

Применяется в сетях, в которых можно пренебречь индуктивным сопро-тивлением и учитывать только активные сопротивления. Например, в кабельных сетях напряжением до 35 кВ. Учитывая, что индуктивное сопротивление воздушных ЛЭП изменяется в малых пределах, прием может использоваться и для преобразования сетей более высокого напряжения.

Для упрощения расчетов сечения всех проводов сети приводятся с одному общему сечению. В качестве приведенной (эвивалентной) площади сечения принимается площадь сечения проводов, кторые наиболее часто встречаются в заданной сети. После приведения площадей сечений всех участков к эквива-лентной расчет преобразованной сети ведется не по сопротивлениям участков сети, а по их длинам. Это упрощает расчет.

В основу приема положено условие, что электрическое состояние сети до и после преобразования не изменяется. Это значит, что распеределение мощности и потеря напряжения одинаковы до и после преобразования.

Условие соблюдается, если активные сопротивления участков до и после преобразования не изменятся.

Предположим, что участок длиной l 1 выполнен сечением F 1. Сечение участка нужно заменить сечением F. Математически условие преобразования записывается следующим образом:

 

или .

 

Для выполнения условия должна измениться длина участка сети. Ее величина определяется из приведенного выражения:

 

 

Прием 2. Замена параллельных линий при отсутствии на них нагрузок эквивалентной линией

 

Прямая задача. Известны мощности параллельных линий и их сопротивления (см. рис. 13.1 а). Необходимо найти значения и в преобразованной схеме (см. рис. 13.1 б).

Условие эквивалентности схем – одинаковое напряжение в точке 0 в преобразованной и исходной схемах.

Если напряжение в точках 1 – n одинаково, то мы можем записать:

 

и

 
 

Эквивалентная проводимость схемы рассчитывается по формуле:

 

 

Обратная задача. Известны мощность и сопротивление в преобразованной схеме (см. рис. 13.1 б). Найти мощности в исходной схеме (см. рис. 13.1 а).

Так как напряжение в точке 0 одинаково, то одинаково падение напряжения на сопротивлениях в преобразованной и исходной схемах:

 

 

или

 

 

Из полученного равенства можно найти значения мощностей :

 

 

Прием 3. Замена источников напряжения, присоединенных к одной точке сети, одним эквивалентным

 

Прямая задача. Известны значения токов параллельных линий, их сопротивления и значения фазных ЭДС (см. рис. 13.2 а). Необходимо найти значения и в преобразованной схеме (см. рис. 13.2 б).

Условие эквивалентности схем – одинаковое напряжение в точке 0 в преобразованной и исходной схемах.

 

 
 

Значение токов в ветвях исходной схемы рассчитываются по выражениям:

 

(13.1)

 

Значение тока в эквивалентной сети равно:

 

(13.2)

 

Подставим выражение (13.1) в (13.2):

 

 

Так как , то полученное выражение можно записать так:

.

 

Раскроем скобки и выполним преобразования. В результате получим следующее выражение:

 

 

или

 

 

Откуда величина эквивалентной фазной ЭДС будет равна:

 

 

Обратная задача. Известны значения и в преобразованной схеме (см. рис. 13.2 б) Необходимо найти токов в исходной схеме. (см. рис. 13.2 а).

Величина падения напряжения на сопротивлениях в исходной схеме определяется как:

 

 

Аналогичное выражение можно записать для преобразованной схемы:

 

 

Из полученных выражений найдем значение напряжения в точке 0:

 

(13.3)

и

(13.4)

Приравнивая поочередно выражения из (13.3) к выражению (13.4), получим:

 

 

Из этих равенств можно определить искомые значения токов:

 

 

Чтобы определить значения мощностей в ветвях, нужно сопряженные комплексы токов умножить на значение напряжения в точке 0 и корень из трех:

 

 

Прием 4. Преобразование треугольника сопротивлений в эквивалентную звезду

 

Прямая задача. Известны значения мощностей в ветвях треугольника , их сопротивления . (см. рис. 13.3). Необходимо найти значения мощностей в лучах звезды и их сопротивления .

Условие эквивалентности схем – режим за точками 1, 2 и 3 остается неизменным до и после преобразования.

Сопротивления лучей звезды рассчитываются по формулам:

 

 

 

Мощности в лучах звезды определяются по I закону Кирхгофа, составленного для узлов 1, 2, 3. При принятых направлениях мощностей получим:

 

 

Обратная задача. Известны значения мощностей в лучах звезды и их сопротивления (см. рис. 13.3). Необходимо найти значения мощностей в ветвях треугольника , их сопротивления .

Сопротивления сторон треугольника рассчитываются по формулам:

 

 

 

Мощности в ветвях треугольника рассчитываются по II закону Кирхгофа, составленного для замкнутых контуров. При принятом направлении обхода контуров по часовой стрелки, имеем следующие уравнения:

 

 

 

 

Решая полученные уравнения, определяем значения мощностей в треугольнике:

 

 

Прямым может быть преобразование звезды в треугольник. Тогда обратная задача – преобразование треугольника в звезду.

 





Поделиться с друзьями:


Дата добавления: 2016-03-28; Мы поможем в написании ваших работ!; просмотров: 449 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Так просто быть добрым - нужно только представить себя на месте другого человека прежде, чем начать его судить. © Марлен Дитрих
==> читать все изречения...

2463 - | 2219 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.01 с.