Классификация по модели взаимодействия.
Модель клиент - сервер.
Под сервером понимают:
1.Компьютер в сети, предоставляющий свои услуги другим, т.е. выполняющий определенные функции по запросам других.
2.Программа-сервер.Она устанавливается на компьютере-сервере.
Обслуживаемые компьютеры общаются с сервером посредством соответствующей (client-) программы, предназначенной для работы в паре с программой-сервером. Программа клиент работает непосредственно на рабочей станции.
Клиент. Под клиентом понимаются:
1.Пользователь.
2.Прикладная программа, работающая в интересах пользователя для предоставления
неких услуг с сервера где-либо в какой-либо сети.
Клиент-сервер – это технология работы различных программ в сети. Программа, работающая по такой схеме, состоит их двух взаимодействующих частей: клиента и сервера. Клиент находится на
машине пользователя, сервер на соответствующем сервере (компьютере). Сервер по командам клиента выполняет определенные действия, предоставляя услуги клиенту. Т.е., для предоставления услуг в такой схеме необходимы наличие и одновременная слаженная работа обеих указанных частей.
Предоставление услуг в Internet построено по этой схеме, т.е. оно осуществляется совместной работой 2-х процессов: на компьютере пользователя и на компьютере сервере.
По уровню управления сети делятся на одноранговые и двуранговые
Двуранговые сети имеют выделенный сервер, который управляет пересылкой сообщений между рабочими станциями и всеми связями между сетевыми устройствами, хранит разделяемые информационные ресурсы.
Основные проблемы компьютерных сетей связаны с передачей данных. На скорость и надежность передачи данных большое влияние оказывают расстояния. Стоимость физических каналов, коммуникационного оборудования вносит существенный вклад в общую стоимость сети. Поэтому основными классификационными признаками компьютерных сетей являются пространственные характеристики территорий, которые они охватывают. С этой точки зрения сети можно разделить на локальные, региональные, территориальные и глобальные. Точно указать границу между этими классами сетей в настоящее время не представляется возможным. Однако приблизительно можно сказать, что локальные рассположены в пределах зданий, небольших территорий (радиусом до 10км). Повышение скорости передачи в локальных сетях сопровождается ужесточением требований к расстояниям (порядка сотен метров). Региональные сети охватывают территории городов, областей. К территориальным сетям можно отнести сети стран, совокупность региональных сетей. Глобальные сети охватывают территории нескольких стран и континентов.
1.2.Назначение ЛВС
В локальных сетях работа пользователя с сетевыми ресурсами происходит так же, как с локальными ресурсамия, но применение ЛВС дает следующие преимущества:
- предоставление в распоряжение пользователей общего доступа к разделяемым сетевым ресурсам: мощным накопителям (в том числе дисководам со сменными дисками), быстродействующим лазерным принтерам, графическим устройствам. Например, NetWare 4.1 может поддерживать до 32 Тбайт дисковой и до 4 Гбайт оперативной памяти. Для современного аппаратного обеспечения NetWare 4.1 поддерживает 256 Мбайт оперативной и 2048 Гбайт дисковой памяти;
- обеспечение потребностей многих пользователей в дорогостоящих программных средствах, располагающихся на сетевых дисках. Так как необходимые данные и программы могут быть доступны с каждого рабочего места, возрастает производительность труда;
- более эффективная защита централизованных баз данных, чем для автономного компьютера. При необходимости для наиболее важных данных могут создаваться резервные копии;
- обеспечение эффективных средств взаимодействия пользователей друг с другом, например, посредством электронной почты. Возможно проведение конференций;
- повышение надежности всей информационной системы, поскольку при отказе одной ЭВМ другая, резервная, может взять на себя ее функции и рабочую нагрузку.
2. Архитектура компьютерных сетей. ЭталоннАЯ моделЬ взаимодействия открытых систем. Протоколы компьютерной сети.
2.1. Архитектура связей
Для передачи данных в сетях используется Международный стандарт - Базовая модель открытых систем OSI, разработанная Международной организацией по стандартизации (ISO). Эта модель служит базой для производителей при разработке совместимого сетевого оборудования. Она представляет собой самые общие рекомендации для построения стандартов совместимых сетевых программных продуктов. Эти рекомендации должны быть реализованы как в аппаратуре, так и в программных средствах вычислительных сетей.
Модель содержит 7 уровней. Основная идея модели заключается в том, что каждому уровню отводится конкретная роль. Поэтому общая задача передачи данных формализуется и расчленяется на отдельные легко обозримые задачи. В процессе развития и совершенствования любой системы возникает потребность изменения отдельных компонентов, а так как интерфейсы между уровнями определены однозначно, можно изменить функции одного или нескольких из них, сохраняя возможность безошибочной работы сети в целом. В сетях происходит взаимодействие между одноименными уровнями модели в различных ЭВМ. Такое взаимодействие должно выполняться по определенным правилам, называемых протоколом.
Описание уровней модели:
7 - прикладной. Определяет набор прикладных задач, реализуемых в данной сети, и все сервисные элементы для их выполнения. На этом уровне пользователю предоставляется уже переработанная информация. На прикладном уровне реализуются сетевые приложения, а также функции, не реализованные по каким-то причинам на нижнем уровне. Функции прикладного уровня реализуются в пользовательских сетевых программах, приложениях. Как правило, сетевые программы реализуют функции верхних трех уровней.
6 - уровень представления данных. Преобразует передаваемые данные в экранный формат или в формат для печатающих устройств оконечной системы. Представительный уровень отвечает за представление сетевых услуг прикладному уровню в стандартной форме. К представительному уровню относятся такие понятия, как "виртуальный терминал", "виртуальный диск";
- 5 - сеансовый. Организует сеанс связи (установление, поддержка и завершение сеанса) между абонентами через сеть.Предназначен для синхронизации обмена данными на уровне крупных порций информации, для организации '.диалога. Верхнему уровню он предоставляет средства организации сетевого диалога, сеанса связи,.;
4 - транспортный. Поддерживает непрерывную передачу данных между двумя взаимодействующими друг с другом процессами пользователей. Занимается передачей транспортных блоков между узлом-источником данных и узлом-адресатом. Транспортные блоки обычно являются более крупными порциями битов, чем пакеты. Поэтому они разбиваются на пакеты при передаче на сетевой уровень. На транспортном уровне решается ряд задач, не решенных на нижних уровнях - надежность передачи, управление потоком данных. Верхнему уровню транспортный уровень предоставляет виртуальное транспортное соединение для надежной передачи транспортных блоков. Типичным представителем транспортного уровня является популярный в сети Internet протокол ТСР;
3 - сетевой. Устанавливает связь между абонентами и осуществляет маршрутизацию пакетов в сети, т.е. передачу информации по определенному адресу. Основными функциями сетевого уровня являются:
передача пакетов между узлами, не связанными физическими каналами;
выбор маршрутов для передачи данных.
Верхнему уровню сетевой уровень предоставляет виртуальный канал для передачи пакетов между любой парой узлов сети, независимо от наличия физической связи между ними. Функции нижних трех уровней реализуются маршрутизаторами. Кроме того, современные маршрутизаторы реализуют функции шлюзов, соединяющих сети, использующие разные протоколы.
определяет путь следования данньтх посети, позволяя 1им найти получателя. Это значит, что он определяет скорость передачи по сети и контроль целостности данных. Этот уровень можно рассматривать как службу доставки. Сетевой уровень служит интерфейсом между компьютерами и коммутаторами пакетов. Для маршрутизации данных в сети используется таблица маршрутизации. Это база данных, где описывается местонахождение возможных получателей пакетов. Сетевой уровеньИспользуя такую таблицу, маршрутизатор в состоянии найти путь пакета для любого получателя в сети.
Таблица маршрутизации может быть статической или динамической. В статической таблице информация обновляется оператором. В динамической - различными программами при запуске каждого нового сеанса или появлении нового пакета маршрутизации.
Подключение новых компьютеров к сети приводит к возрастанию потока пакетов через нее. Сетевой уровень контролирует поток данных при маршрутизации пакетов (трафик). При этом возникает необходимость учитывать трафик на разных участках сети для решения вопроса оплаты. Информация о трафике выдается сетевым уровнем.
2 - канальный.. Основным назначением канального уровня является надежная передача группы битов, называемых обычно кадрами,. между узлами, связанными физическими каналами. Иногда блоки данных канального, уровня.; называют пакетами, однако это название лучше зарезервировать для сетевого уровня..Таким образом, канальный. уровень предоставляет сетевому уровню канал для надежной передачи пакетов. Функции физического и канального уровней в локальных сетях выполняют сетевые платы. Первые модемы выполняли только функции физического уровня. Современные модемы, реализуя протоколы передачи данных с коррекцией ошибок, стали выполнять и функции канального уровня.
-1 - физический. Определяет электрические, механические, функциональные и процедурные параметры для физической связи в системах. Уровень выполняет сопряжение со средой передачи данных и предоставляет канальному уровню виртуальный канал для передачи битов.
Отдельные уровни базовой модели проходят в направлении вниз от источника данных (от уровня 7 к уровню 1) и в направлении вверх от приемника данных (от 1 к 7). Пользовательские данные передаются порциями-кадрами в нижерасположенный уровень вместе со специфическим для каждого уровня заголовком до тех пор, пока не будет достигнут последний уровень. На приемной стороне поступающие данные анализируются и передаются далее в вышерасположенный уровень, пока не будут переданы в пользовательский прикладной уровень. В разных сетях отдельные уровни могут отсутствовать.
Функции, выполняемые каждым уровнем, должны быть реализованы либо аппаратурой, либо программами. Функции физического уровня всегда реализуются аппаратурой (адаптерами, мультиплексорами передачи данных, сетевыми платами и т.д.), а функции остальных уровней, как правило, программными модулями (драйверами).
2.2.Протоколы компьютерной сети.
Протокол - набор правил, определяющий взаимодействие двух одноименных уровней модели взаимодействия открытых систем в различных абонентских ЭВМ. Функции протоколов различных уровней реализуются в драйверах для различных вычислительных сетей.
Современные сети построены по многоуровневому принципу. Чтобы организовать связь 2-х | компьютеров, требуется сначала определить свод правил их взаимодействия, определить язык их общения, т.е. определить, что означают посылаемые ими сигналы и т.д. Эти правила и определения называются протоколами.
Протокол можно также рассматривать как совокупность определений (соглашений, правил), регламентирующих формат и процедуры обмена информацией между двумя или несколькими независимыми устройствами или процессами. Т.е. описание того, как программы, компьютеры или иные устройства должны действовать, когда они взаимодействуют друг с другом.
Протокольные определения охватывают диапазон: от того, в каком порядке биты следуют по проводу, до формата сообщения • электронной почты. Стандартные протоколы позволяют.связываться друг с другом компьютерам различных производителей. Взаимодействующие компьютеры могут использовать совершенно различное программное обеспечение, ;но должны соблюдать принятое соглашение о том, как посылать и принимать принимаемые данные.
Для работы сетей необходимо запастись множеством различных протоколов: например, управляющих физической связью, установлением связи по сети, доступам к различным ресурсам и т.д. Многоуровневая структура используется с целью упростить это огромное множество протоколов и отношений. Она позволяет также составлять сетевые системы из продуктов - модулей программного обеспечения, - выпущенных разными производителями.
Набор протоколов, работающих одновременно и совместно водной сети, называется стеком протоколов.
В основе работы Internet лежит стек протоколов ТСР/IР (Transfer Communication Protocol/Internet Protocol)). Его особенность состоит в доставке информации с одного компьютера на другой любыми путями, если оба компьютера находятся в IP пространстве. Принадлежность к этому пространству определяется наличием IР-адреса у каждого из этих компьютеров.
2.3. Управление сетью
Рассмотрим более подробно управление ЛВС. По способу управления локальные вычислительные сети могут быть организованы как одноранговые или двуранговые.
В одноранговой ЛВС нет единого центра управления взаимодействием входящих в сеть компьютеров и нет единого устройства для хранения данных. Сетевая операционная система распределена по всем компьютерам и пользователю доступны все устройства сети (диски, принтеры). Достоинством одноранговых сетей является их низкая стоимость, но в таких сетях сложно обеспечить защиту информации, трудно управлять всей сетью и обновлять программное обеспечение.
В двуранговой сети выделен компьютер - сервер, выполняющий функции хранения данных, предназначенных для совместного использования и управляющий взаимодействием компьютеров и других устройств, входящих в состав сети.
Рабочая станция - это персональный компьютер, c которого пользователь получает доступ к сетевым ресурсам. На нём он выполняет свою работу, обрабатывает свои файлы и пользуется своей операционной системой (например, Windows 2000, Windows XP). Дополнительно рабочая станция содержит плату сетевого интерфейса (сетевой адаптер) и физически соединена с файловым сервером.
Сервер - это компьютер в сети, предоставляющий пользователям свои ресурсы. Он координирует работу всех рабочих станций и регулирует распределение сетевых ресурсов и поток данных в сети. Для управления вычислительной сетью сервер использует специальную (сетевую) операционную систему. Сервер является ядром ЛВС. Это обычно более производительный компьютер, запускающий сетевую операционную систему. Именно он указывает, кто первым может воспользоваться принтером, какой файл и каким пользователем может быть открыт и т.п. На сервере размещается база данных коллективного пользования.
Сервер может быть специализированным и неспециализированным. Специализированныйсервер используется только для управления сетью, а неспециализированный сервер управляет сетью и в то же самое время работает как обычная рабочая станция. В общем случае различают сервера следующих видов:
файловый сервер – это хранилище файлов, регламент доступа к которым заранее определён;
сервер приложений – выполняет обработку запросов пользователей, привлекая для этого различные пакеты программ (например, СУБД);
сервер печати;
почтовый сервер;
сервера Internet.
Сервер в ЛВС так же, как и рабочие станции, содержит плату сетевого адаптера, через которую и соединяется с рабочими станциями.
2.ПЕРЕДАЧА ДАННЫХ
Для передачи сообщений в компьютерных сетях используются различные типы каналов связи. В ЛВС в качестве передающей среды используются витая пара проводов, коаксиальный и оптоволоконный кабель.
Отдельное удаленное оборудование ЛВС (компьютеры, периферийное оборудование, другие сети) могут подключаться через модемы и линии связи (телефонные, радио, спутниковые).
Сервер и рабочие станции ЛВС могут быть соединены на основе топологии трех видов: шины, звезды или кольца.
Топология ЛВС - это геометрическая схема соединения узлов сети. Подробное описание применяемых для ЛВС топологий и их особенности можно найти в учебном пособии “Локальные вычислительные сети. Работа с базами данных коллективного пользования” [1], а также в литературе [5,6]. Выбор той или другой топологии определяется областью применения и размером конкретной ЛВС, расположением ее узлов. C топологией сети связаны методы доступа к узлам сети и выбор сетевого оборудования.
Для ЛВС были разработаны множество систем, включающих в себя аппаратные средства и протокол передачи данных. Эти системы поддерживает соответствующее сетевое программное обеспечение. Система доступа к cети (аппаратура и протокол) обеспечивает электронную магистраль для передачи данных, а сетевая операционная система - управление ресурсами всей системы и обработкой данных.
2.1.Классические топологии
Топология – это усреднённая геометрическая схема соединения узлов сети. Под структурой компьютерной сети будем понимать отображение, описание связей между ее элементами.
Общая шина
|
Характеризуется использованием общего канала всеми устройствами. Основное преимущество – простота. Основной недостаток – необходимость организации очерёдности доступа к каналу. Наиболее популярной использование – технология Ethernet.
Кольцо.
Пользователи канала могут быть объединены в кольцо одним каналом или независимыми каналами. Первый случай походит на общую шину. Разница в том, что из кольца необходимо удалять передаваемые данные. Наиболее популярное использование -технологии Токеn Ring. Требует управления доступа к каналу. Во втором случае кабельная система дороже, данные передаются, с ретрансляцией, зато станции могут обмениваться данными относительно независимо друг- от друга. Большое значение имеет наличие двух путей для передачи данных, что повышает производительность и надежность сети. Чаще всего используется при больших расстояниях между узлами, при использовании для их соединения выделенных каналов.
Звезда
Является в то же время элементом иерархической структуры. Отличается относительно высокой стоимостью кабельной системы. Особенно, если узлы находятся на больших расстояниях. Позволяет сосредоточить в одном месте все проблемы по передаче данных, по адресации. Является основой для построения структурированных кабельных систем, широковещательных радиосетей, радио сот.
Иерархическая топология
Позволяет сократить длину кабелей (по сравнению со звездой) и структурировать систему в соответствии с функциональным назначением элементов. Наиболее гибкая структура. Практически все сложные системы имеют в своем составе иерархические структуры. Пример такой сети сети – Arcnet.
Полносвязная (сотовая топология)
Каждая пара узлов' соединена между собой отдельным каналом. Наиболее дорогая кабельная система. При этом достигается максимальная производительность, надежность, скорость передачи. Используется в Internet, а также для построения сети передачи общего пользования.
2.2.Объединение сетей
Самый простой вапиант объединения - объединение одинаковых сетей в пределах ограниченного пространства. В пределах допустимой длины строится отрезок сети - сетевой сегмент. Для объединения сетевых сегментов используются мосты - отдельные ЭВМ со специальным пролграммным обеспечением и дополнительной аппаратурой. Мост может объединять сети разных топологий, но работающие под управлением однотипных сетевых операционных систем.
Для объединения ЛВС различных типов, работающих под управлением разных протоколов и операционных систем, используются компьютеры - шлюзы. Шлюз осуществляет свои функции на уровнях выше сетевого. Он не зависит от передающей среды, но зависит от используемых протоколов обмена данными. Обычно шлюз выполняет преобразование между двумя протоколами.
Мосты и даже шлюзы конструктивно выполняются в виде плат, которые устанавливаются в компьютере. Свои функции они могут выполнять как в режиме полного выделения функций, так и в режиме совмещения их с функциями рабочей станции вычислительной сети.
3. ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ В КОМПЬЮТЕРНЫХ СЕТЯХ
В вычислительных сетях используются следующие аппаратные средства.
Сетевой адаптер – плата, с помощью которой компьютер подключается к локальной сети. Выбор платы сетевого адаптера зависит от разных факторов:
протокола канального уровня (наиболее часто используется Ethernet, но могут быть примененны адаптеры, поддерживающие Token Ring, FDDI, ATM и др.);
скорости передачи посети (Ethernet имеет 10 Мбит/с, 100 Мбит/с (Fast Ethernet, 1000 Мбит/с – Gigabit Ethernet);
типа сетевого кабеля. Тип сетевого кабеля выбирается в то же время, что ипротокол канального уровня, поскольку приобретаемый адаптер должен поддерживать соответствующую среду передачи данных. Некоторые протоколы Канального уровня рассчитаны на разные типы кабеля, и для каждого типа есть свои сетевые адаптеры. Также есть протоколы, разработанные для использования только одного типа кабеля;
типа системной шины, в которую вставляется плата адаптера (обычно PCI);
аппаратных ресурсов, запрашиваемых адаптером. Плата сетевого адаптера нуждается в свободной линии запроса на прерывание (IRQ, interrupt request line) и обычно в адресепорта ввода/вывода или адресе памяти, либо в том и другом. Когда оцениваются сетевые адаптеры, необходимо учитывать требования адаптера к ресурсам и сами доступные ресурсы компьютера. Если на ПК работает технология Plug and Play, то компьютер сам динамически назначает аппаратные ресурсы адаптеру;
класса компьютера, использующего сетевой адаптер: сервер/рабочая станция, домашний/офисный. Функции сетевых адаптеров на серверах и рабочих станциях одинаковы, но есть сетевые платы, специально предназначенные для для подключения к серверам. Некоторые адаптеры используют протоколы, подобные Gigabit Ethernet, которые предназначены только для серверов;
требований к электропитанию. Требуется оценить, достаточна ли мощность источника питания при установке дополнительной платы сетевого адаптера;
наличия соответствующих драйверов.Сейчас все операционные системы содержат драйверы для большинства сетевых адаптеров, но для очень старых плат или адаптеров от малоизвестных фирм драйверов в системе может не быть, и тогда надо его купить.
Репитер (повторитель) – устройство для усиления сигналов в сети в том случае, если длина сегмента сети превышает допустимую. В современной сети очень редко можно увидеть отдельно стоящий репитер. Как правило, его функции встроены в другое устройство – концентратор или коммутатор.
Концентратор – это устройство, выполняющее функции связующего звена для кабеля в сети с топологией “звезда”. Каждый компьютер отдельным кабелем подключен к центральному концентратору. Концентратор отвечает за распространение трафика, пришедшего на любой из портов, через все остальные порты. В зависимости от кабеля в концентраторе могут быть применены электрические схемы, оптические компоненты или другие технологии для распределения входящего сигнала между всеми выходными портами. Внешне концентратор представляет собой коробку с пронумерованными портами, к которым подключается кабель. Порты могут быть стандартными гнёздами RJ-45 для сетей на основе витой пары, гнёздами под ST – коннекторы для оптоволоконного кабеля или разъёмами под любые другие виды коннекторов, применяемых в сетях с тополгией "звезда". Термин "концентратор" употребляется для сети Ethernet. Некоторые интеллектуальные концентраторы запоминают физический адрес сетевой платы, связанной с отдельным портом. Эти К могут быть заранее запрограммированы с помощью статического списка адресов, соответствующих ПК, или установить это соответствие самостоятельным поиском. Установленное соответствие статических адресов может быть использоано для закрытия доступа к сети некоторым пользователям. Если ПК с физическим адресом\. не указанным в этом списке, попытается подключиться к сти, ПК сможет изолировать этот порт. После изолирования этот ПК не сможет подсоединиться к ПК, подключеннму к другому порту концентратора. Не все порты конц-ра служат для подключения ПК. Одним из портов может быть интерфейс сетевых устройств (AUI 0 attachmen unit interface), позволяющий подключить другой концентратор, мост или маршрутизатор.
Концентраторы бывают пассивные и активные (ретранслирующие) – с функциями усиления сигналов.
Репитеры, концентраторы и мосты соединяют сегменты сети на физическом и канальном уровнях модели OSI.
Маршрутизатор (роутер) – устройство, определяющее маршрут передачи пакетов в сети в соответствии с заданным адресом. Маршрутизаторы работают на сетевом уровне, поэтому они способны интегрировать разнородные сети. Например, соединить Ethernet и Token Ring. Выбор маршрутизатора зависит от протокола. Наиболее широко применяется Internet Protocol (IP, межсетевой протокол), лежащий в основе Internet. Однако некоторые локальные сети используют на сетевом уровне протокол InternetworkPacket Exchange (IPX, межсетевой обмен пакетами). Маршрутизаторы изолируют трафик в отдельных ЛВС, передавая только пакеты, адресованные системам в других ЛВС.
Коммутатор – это многопортовое устройство, у которого каждый порт связан с отдельным сегментом сети. Внешне похожий на концентратор, коммутатор принимает входящий трафик через свои порты, но в отличие от концентратора, который передаёт исходящий трафик через множество портов, коммутатор передает трафик только через один порт, необходимый для достижения места назначения. Основная роль коммутаторов состоит в коммутации каналов, заключающейся в соединении на своих внутренних шинах входных и выходных цепей. в зависимости от того, куда направляются данные. Иногда коммутация осуществляется с помощью буферов, без непосредственного электрического соединения.
Коммутатор обычно значительно более сложное и дорогое устройство, чем концентратор. Иногда для названия того и другого используется термин HUB, что в переводе с английского означает центр, основа, сердце. При использовании термина HUB часто непонятно, о чем идет речь, о коммутаторе или концентраторе. Путаница возникает также из-за того, что концентраторы иногда выполняют функции коммутации, а коммутаторы выполняют функции маршрутизации. Поэтому для понимания того, что есть что, надо меньше обращать внимания на название устройства, а больше на набор функций, которые оно выполняет. Коммутатор ЛВС (LAN Switch) позволяет конфигурировать сети неограниченного размера. Коммутаторы функционируют на канальном уровне, но могут поддерживать и любой протокол сетевого уровня и выполнять функции маршрутизации. Современный Switch является одновременно и маршрутизатором, и коммутатором. Преимущество коммутатора заключается в том, что он управляет сетевым трафиком. Когда концентратор производит широковещательную передачу всех кадров во все подсоединённые к нему сегменты, то каждый ПК должен остановиться и прслушать среду во избежание конфликтов. Коммутатор же передаёт трафик толе одному сегменту, не активизируя остальные сегменты. Фактически, можно продолжить обмен данными с другими сегментами. Коммутация делает возможным резервирование более широкой полосы прпусканиядля приложений, требующих интенсивного трафика. С помощью коммутации каждый порт может иметь свой канал, допустим, на 10 Мбит/с, в то время как в концентраторе все порты одновременно используют один и тот ж канал на 10 Мбит/с (или на др. скорсти).
Применение коммутации позволяет соединить вместе несколько сетей и воспользоваться преимуществами связи без помех, возникающих вледствие совместного использования полосы пропускания. Роль коммутатора гораздо сложнее, чем было рассмотрено.. Как правило, к портам коммутатора концентраторы подключаются для того, чтобы каждый сегмент сети имел собственный порт. В зависимости от местоположения ком-ра в сети, их можно использовать для изолирования частей сети на уровне рабочих групп или магистрали. Поэтому различают коммутаторы рабочих групп и магистральные коммутаторы.
Модемы служат для передачи данных по аналоговым (телефонным) каналам связи.
Объединение сетей. Самый простой вариант объединения - объединение одинаковых сетей в пределах ограниченного пространства. В пределах допустимой длины строится отрезок сети - сетевой сегмент. Для объединения сетевых сегментов используются мосты - отдельные ЭВМ со специальным программным обеспечением и дополнительной аппаратурой. Мост может объединять сети разных топологий, но работающие под управлением однотипных сетевых операционных систем. Работу моста в сети Ethernet можно описать так: когда в сети с мостами выполняется широковещательная передача, мост "слышит" её и читает MAC – адрес места назначения кадра. Если этот адрес не относится к другой сети, он его не пропускает и, наоборот, передает в другую сеть пакеты,. адресованные ей. Мост может быть организован и с помощью современного коммутатора.
Для объединения ЛВС различных типов, работающих под управлением разных протоколов и операционных систем, используются компьютеры - шлюзы. Шлюз осуществляет свои функции на уровнях выше сетевого. Он не зависит от передающей среды, но зависит от используемых протоколов обмена данными. Обычно шлюз выполняет преобразование между двумя протоколами.
Мосты и даже шлюзы конструктивно выполняются в виде плат, которые устанавливаются в компьютере. Свои функции они могут выполнять как в режиме полного выделения функций, так и в режиме совмещения их с функциями рабочей станции вычислительной сети. Сейчас выпускаются маршрутизаторы с функциями шлюзования.
5.КОММУТАЦИЯ В СЕТЯХ
Телефонная коммутация является жизненно важным элементом связи абонентских систем между собой и с центрами управления, обработки и хранения информации в сетях. Узлы сети подключаются к некоторому коммутирующему оборудованию, избегая, таким образом, необходимости создания | специальных линий связи.
Далее рассматриваются различные методы коммутации, когда используются коммутируемые линии связи. Однако два и более конечных пункта сети могут соединяться выделенной линией, если между ними все время осуществляется связь с постоянной скоростью передачи. Выделенная линия соединяет два конечных пункта по двухточечной схеме. В случае же многоточечного подключения абонентов к выделенной линии ее ресурсы используются в режиме разделения. Организация связи в многоточечном режиме, обеспечивающем экономию на транспортных расходах, популярна в компьютерных сетях (особенно в ЛВС) из-за снижения затрат по сравнению с затратами при большом количестве монопольно используемых связных ресурсов в двухточечном режиме.
Коммутируемой транспортной.сетью назывался сеть, в которой между двумя (или более)конечными пунктами устанавливается' связь по запросу. Примером такой сети является коммутируемая телефонная сеть.
Существуют следующие методы коммутации:
коммутация цепей (каналов);
коммутация с промежуточным хранением, в свою очередь, разделяемая на коммутацию сообщений и коммутацию пакетов.
Коммутация цепей. При коммутации цепей (каналов) между связываемыми конечными пунктами на протяжении всего временного интервала соединения обеспечивается обмен в реальном масштабе времени, причем биты передаются с неизменной скоростью по каналу с постоянной полосой пропускания. Между абонентами устанавливается сквозной канал связи до начала передачи информации. Этот канал формируется из отдельных участков с одинаковой пропускной способностью.
Прохождение отдельного сигнала вызова обеспечивается с помощью последовательного включения нескольких коммутационных устройств, размещаемых в центрах коммутации каналов (ЦКК). Каждое устройство резервирует за собой физическое соединение между одним входящим и одним исходящим каналами. Если при установлении сквозного канала связи занята вызываемая сторона или хотя бы одно из коммутационных устройств в цепочке прохождения сигнала вызова, последний будет блокироваться, и абонент, инициировавший вызов, должен спустя некоторое время его повторить.
Время установления сквозного канала связи обычно бывает большим из необходимости организации взаимодействия значительного числа 'устройств коммутаций. После установления такого канала ЦКК выполняют минимальное число функций, хотя при этом может передаваться большой объем информации. Следовательно, при использовании, метода коммутации цепей передача информации обеспечивается двумя основными составляющими в расходной части ресурсов: ресурсами для организации вызова и ресурсами для поддержания в ЦКК коммутационных устройств или для организации распределения временных каналов. Первая составляющая не зависит от объема передаваемой информации, а вторая - прямо пропорциональна интервалу времени, в течение которого происходит соединение.
В качестве недостатков метода коммутации цепей можно указать следующие:
• длительное время установления сквозного канала связи из-за возможного ожидания освобожденияотдельных его участков;
• необходимость повторной передачи сигнала вызова из-за занятости вызываемой стороны иликакого-либо коммутационного устройства в цепочке прохождения этого сигнала (в связи с этимсистема, в которой реализуется метод коммутации цепей, относится к классу систем с потерейзапросов на обслуживание);
отсутствие возможности выбора скоростей передачи информации;
возможность монополизации канала одним источником информации;
наращивание функций и возможностей сети ограниченно;
не обеспечивается равномерность загрузки каналов связи (возможности по сглаживанию загрузкивесьма ограниченны).
Преимущества метода коммутации цепей;.. •
отработанность технологии коммутации цепей (первое коммутационное устройство появилосьеще в конце XIX в.);
возможность работы в диалоговом режиме и "в реальном масштабе времени;
обеспечение, как битовой прозрачности, так и прозрачности по времени независимо от числа ЦККмежду абонентами;
довольно широкая область применения (главным образом передача акустических сигналов).
Коммутация с промежуточным хранением. Отметим особенности всех методов коммутации с промежуточным хранением. Для них характерно, что заранее, до начала передачи информации, сквозной канал между отправителем и получателем не устанавливается. Вызывающий объект посредством набора номера или через выделенную линию связывается только с ближайшим узлом сети и передает ему информационные биты. В каждом узле имеется коммутатор, построенный на базе коммуникационной ЭВМ с запоминающим устройством (ЗУ). Передаваемая информация должна храниться в каждом узле по пути к пункту назначения, причем задержка в хранении, как правило, будет различной для узлов. Наличие ЗУ в промежуточных узлах связи предотвращает потерю передаваемой информации, вследствие чего системы, реализующие рассматриваемые методы коммутации, относятся к классу систем без потерь запросов на обслуживание. Одним из показателей этих методов является возможность согласования скоростей передачи данных между пунктами отправления и назначения, которое обеспечивается наличием в сети эффективных развязок, реализуемых созданием буферных ЗУ в узлах связи. Наконец, для сетей с промежуточным хранением обязательным требованием является битовая прозрачность. Требование же временной прозрачности, как правило, ими не гарантируется.
Коммутация сообщений была преобладающим методом передачи данных в 60—-70-х гг. и до сих пор широко используется в некоторых областях (в электронной почте,- электронных новостях, телеконференциях, телесеминарах). Как и все методы коммутаций с промежуточным хранением, технология коммутации сообщений относится к технологии типа “запомнить и послать”. Кроме того, технология коммутации сообщений обычно предусматривает отношение “главный - подчиненный”. Коммутатор (коммуникационная ЭВМ) в центре коммутации сообщений (ЦКС) выполняет регистрацию и выбор при управлении входящими и выходящими потоками. Здесь не рассматриваются интерактивный режим и работа в реальном масштабе времени, однако данные через коммутатор могут передаваться на очень высокой скорости с соответствующим определением уровней приоритетов для различных типов потоков данных. Высокоприоритетные потоки задерживаются в очереди на обслуживание на более короткое время по сравнению с низкоприоритетными потоками, что позволяет обеспечить интерактивные прикладные задачи.
Важно отметить, что при коммутации сообщений сообщение, независимо от его длины (разброс в длине сообщений может быть достаточно велик), целиком сохраняет свою целостность как единичный объект в процессе его прохождения от одного узла к другому вплоть до. пункта' назначения. Более того, транзитный узел не может начинать Дальнейшую передачу части сообщения, если оно еще принимается. По своему влиянию на задержки.это равноценно низкому уровню использования^ ресурсов сети.
Недостатки метода коммутации сообщений:
необходимость реализации достаточно серьезных требований к емкости буферных ЗУ в узлахсвязи для приема больших сообщений, что обусловливается сохранением их целостности;
недостаточные возможности по реализации диалогового режима и работы в реальном масштабе времени при передаче данных;
выход из строя всей сети при отказе коммутатора, так как через него проходят все потоки данных (это характерно для структуры “главный - подчиненный”);
коммутатор сообщений является потенциально узким местом по пропускной способности;
каналы передачи данных используются менее эффективно по сравнению с другими методами коммутации с промежуточным хранением.
Преимущества метода:
отсутствие необходимости в заблаговременном (до начала передачи данных) установлении сквозного канала связи между абонентами;
• возможность формирования маршрута из отдельных участков с различной пропускной
способностью;
реализация различных систем обслуживания запросов с учетом их приоритетов;
возможность сглаживания пиковых нагрузок путем запоминания низкоприоритетных потоков в
периоды этих нагрузок;
отсутствие потерь запросов на обслуживание
Коммутация пакетов, появившаяся в 70 е годы ХХ века, сочетает в себе преимущества коммутации, каналов и коммутации сообщений. Ее основные цели: обеспечение полной доступности сети и приемлемого | времени реакции на запрос для всех пользователей, сглаживание асимметричных потоков между многими пользователями, обеспечение мультиплексирования возможностей каналов связи и портов компьютеров сети, рассредоточение критических компонентов (коммутаторов) сети.
При коммутации пакетов пользовательские данные (сообщения) перед началом передачи |разбиваются на короткие пакеты фиксированной длины. Каждый пакет снабжается протокольной | информацией: коды начала и окончания пакета, адреса отправителя и получателя, номер пакета в | сообщении, информация для контроля достоверности передаваемых данных в промежуточных узлах связи и в пункте назначения. Будучи независимыми единицами информации, пакеты, принадлежащие | одному и тому же сообщению, могут передаваться одновременно по различным маршрутам в составе 1 дейтаграмм. Управление передачей и обработкой пакетов в узлах связи осуществляется центрами ^ коммутации пакетов (ЦКК) с помощью компьютеров. Длительное хранение пакетов в ЦКК не | предполагается, поэтому пакеты доставляются в пункт назначения с минимальной задержкой, где из | них формируется первоначальное сообщение.
В отличие от коммутации сообщений технология коммутации пакетов, позволяет:
I •увеличить количество подключаемых станций (терминалов), так как здесь больше коммутаторов;| •легче преодолеть трудности, связанные с подключением к коммутаторам.дополнительных линий| связи;
•осуществлять альтернативную маршрутизацию (в обход повреждённых или занятых, узлов связи и каналов), что создает повышенные удобства для пользователей;
•существенно сократить время на передачу пользовательских данных, повысить пропускную способность сети и повысить эффективность использования сетевых ресурсов.
Одной из концепций коммутации пакетов является мультиплексирование с помощью разделения времени использования одного и того же канала многими пользователями, что повышает эффективность функционирования ТКС. Логика коммутации пакетов позволяет мультиплексировать многие пользовательские сеансы на один порт компьютера. Пользователь воспринимает порт как выделенный, в то время как он используется как разделенный ресурс. Мультиплексирование порта и канала называют виртуальным каналом. Коммутация пакетов и мультиплексирование обеспечивают сглаживание асимметричных потоков в каналах связи.
Стоимость организации вызова для пакетной коммутации ниже по сравнению с соответствующей характеристикой метода коммутации цепей: Но с увеличением объема передаваемой информации стоимостная характеристика для пакетной коммутации возрастает быстрее, чём для коммутации цепей, что объясняется необходимостью больших ресурсов для обработки пересылаемой информации. В настоящее время пакетная коммутация являётся основной для передачи данных.
Символьная коммутация (субпакетная коммутация, или метод общего пакета) представляет собой разновидность пакетной коммутаций. Она применяется в случае, когда пакет содержит информационные биты, принадлежащие различным пользователям.
При пакетной коммутации приходится находить компромиссное решение, удовлетворяющее двум противоречивым требованиям. Первое из них - уменьшение задержки пакета в сети, обеспечиваемое уменьшением его длины, и второе - обеспечение повышения эффективности передачи информации, достигаемое, наоборот, увеличением длины пакета (при малой длине пакета длина его заголовка стано- вится неприемлемо большой, что снижает экономическую эффективность передачи). В сети с пакетной коммутацией максимально разрешенный размер пакета устанавливается на основе трех факторов:
распределения длин пакетов, характеристики среды передачи (главным образом скорости передачи) и стоимости. Для каждой передающей среды выбирается свой оптимальный размер пакета.
При использовании символьной коммутации оптимальный размер пакета для конкретной передающей среды сохраняется с одновременным уменьшением времени задержки пакета в сети. Это достигается за счет приема от нескольких пользователей по небольшому количеству символов (информационных битов) и загрузки их в один пакет общего доступа.
Анализ рассмотренных коммутационных технологий позволяет сделать вывод о возможности разработки комбинированного метода коммутации, основанного на использовании в определенном сочетании принципов коммутации сообщений, пакетов и символьной коммутации и обеспечивающего более эффективное управление разнородным графиком.
6.МАРШРУТИЗАЦИЯ ПАКЕТОВ В СЕТЯХ
Сущность, цели и способы маршрутизации. Задача маршрутизации состоит в выборе маршрута для передачи пакетов от отправителя к получателю. Она;имеет смысл в. сетях, где не только необходим, но и
возможен выбор оптимального или приемлемого маршрута. Речь идет; прежде всего, о сетях с произвольной (ячеистой) топологией, в ;которых реализуется коммутация пакетов. Однако в современных сетях со смешанной топологией (звездно-кольцевой, звездно-шинной, многосегментной) реально стоит и решается задача выбора маршрута для передачи кадров, для чего используются соответствующие средства, например маршрутизаторы.
В виртуальных сетях задача маршрутизации при передаче сообщения, расчленяемого на пакеты, решается единственный раз, когда устанавливается виртуальное соединение между отправителем и по-лучателем. В дейтаграммных сетях, где данные передаются в форме дейтаграмм, маршрутизация выполняется для каждого отдельного пакета.
Выбор маршрутов в узлах связи ТКС производится в соответствии с реализуемым алгоритмом (методом) маршрутизации.
Алгоритм маршрутизации — это правило назначения выходной линии связи данного узла связи ТКС для передачи пакета, базирующееся на информации, содержащейся в заголовке пакета (адреса отправителя и получателя, и информации о загрузке этого узла (длина очередей пакетов) и, возможно. ТКС в целом.
Основные цели маршрутизации заключаются в обеспечении'
минимальной задержки пакета при его передаче от отправителя к получателю;
максимальной пропускной способности сети, что достигается, в частности, нивелировкой(выравниванием) загрузки линий связи ТКС;
максимальной защиты пакета от угроз безопасности содержащейся' в нем информации;
надежности доставки пакета адресату;
минимальной стоимости передачи пакета адресату. Различают следующие способы маршрутизации.
Централизованная маршрутизация реализуется обычно в сетях с централизованным управлением. Выбор маршрута для каждого пакета осуществляется в центре управления сетью, а узлы сети связи только воспринимают и реализуют результаты решения задачи маршрутизации. Такое управление маршрутизацией уязвимо к отказам центрального узла и не отличается высокой гибкостью.
Распределенная (децентрализованная) маршрутизация выполняется главным образом в сетях с децентрализованным управлением. Функции управления маршрутизацией распределены между узлами сети, которые располагают для этого соответствующими средствами. Распределенная маршрутизация сложнее централизованной, но отличается большей гибкостью.
Смешанная маршрутизация характеризуется тем, что в ней в определенном соотношенииреализованы принципы централизованной, и распределённой маршрутизации.. К ней относится, например, гибридная адаптивная маршрутизация (см. ниже).
Задача маршрутизации в сетях решается при условии, что кратчайший маршрут, обеспечивающий передачу пакета за минимальное время, зависит от топологии сети,:пропускной способности линий связи, нагрузки на линии связи. Топология сети изменяется в результате отказов узлов и линий связи и отчасти при развитии ТКС (подключении новых узлов и линий связи). Пропускная способность линий связи определяется типом передающей среды и зависит от уровня шумов и параметров аппаратуры, обслуживающей линии. Наиболее динамичным фактором является нагрузка на линии связи,
изменяющаяся довольно быстро и в трудно прогнозируемом направлении.
Для выбора оптимального маршрута-каждый'узел связи должен располагать информацией о состоянии ТКС в целом всех остальных узлов и линий связи. Данные о текущей топологии сети и пропускной способности линий связи предоставляются узлам без затруднений. Однако нет способа для точного предсказания состояния нагрузки в сети. Поэтому при решении задачи маршрутизации могут использоваться данные о состоянии нагрузки, запаздывающие (из-за конечной скорости передачи информации) по отношению к моменту принятия решения о направлении передачи пакетов. Следовательно, во всех случаях алгоритмы маршрутизации выполняются в условиях неопределенности текущего и будущего состояний ТКС.
Эффективность алгоритмов маршрутизации оценивается следующими показателями:
•временем доставки пакетов адресату;
•нагрузкой на сеть, которая при реализации данного алгоритма создается потоками пакетов, распределяемыми по линиям и узлам сети. Количественная оценка нагрузки осуществляется длиной очередей пакетов в узлах;
•затратами ресурсов в узлах связи (временем работы коммуникационной ЭВМ, емкостью памяти). Факторы, снижающие эффективность алгоритмов маршрутизации:
•передача пакета в узел связи, находящийся под высокой нагрузкой; '•'
•передача пакета в направлении, не приводящем к минимальному'времени его доставки;
•создание на сеть дополнительной нагрузки за счет передачи служебной информации, необходимой для реализации алгоритма. : -
Методы маршрутизации. Различают три вида маршрутизации - простую, фиксированную и адаптивную. Принципиальная разница между ними - в степени учета изменения топологии и нагрузки сети при решении задачи выбора маршрута.
Простая маршрутизация отличается тем, что при выборе маршрута не учитывается ни изменение топологии сети, ни изменение ее состояния (нагрузки). Она не обеспечивает направленной передачи пакетов и имеет низкую эффективность. Ее преимущества - простота реализации алгоритма маршрутизации и обеспечение устойчивой работы сети при выходе из строя отдельных ее элементов. Из этого вида некоторое практическое применение получили случайная и лавинная маршрутизации.
Случайная маршрутизация характеризуется тем, что для передачи пакета из узла связи выбирается одно, случайно выбранное, свободное направление. Пакет «блуждает» по сети и с конечной вероятностью когда-либо достигает адресата. Естественно, что при этом не обеспечивается ни оптимальное время доставки пакета, ни эффективное использование пропускной способности сети.
Лавинная маршрутизация (или заполнение пакетами.всех свободных выходных направлений) предусматривает передачу пакета из узла по всем свободным выходным линиям. Поскольку это происходит в каждом узле, имеет место явление «размножения-» пакета, что.резко ухудшает использование пропускной способности сети. Значительное ослабление этого недостатка достигается путем уничтожения в каждом узле дубликатов (копий) пакета и продвижения по маршруту только одного пакета. Основное преимущество такого метода - гарантированное.обеспечение оптимального времени доставки пакета адресату, так как из всех направлений, по которым передается пакет, хотя бы одно обеспечивает такое время. Метод может использоваться в незагруженных сетях, когда требования по минимизации времени и надежности доставки пакетов достаточно высоки.
Фиксированная маршрутизация характеризуется тем, что при выборе маршрута учитывается изменение топологии сети и не учитывается изменение ее нагрузки. Для каждого узла назначения направление передачи выбирается по таблице маршрутов (каталогу), которая определяет кратчайшие пути. Каталоги составляются в центре управления сетью. Они составляются заново при изменении топологии сети. Отсутствие адаптации к изменению нагрузки приводит к задержкам пакетов сети. Различают одно-путевую и много путевую фиксированные маршрутизации. Первая строится на основе единственного пути передачи пакетов между двумя абонентами, что сопряжено с неустойчивостью к отказам и перегрузкам, а вторая — на основе нескольких возможных путей между двумя абонентами, из которых выбирается наиболее предпочтительный путь. Фиксированная маршрутизация применяется в сетях с мало изменяющейся топологией и установившимися потоками.пакетов. •'.'
Адаптивная маршрутизация отличается тем, что -принятие.решения о направлении передачи пакетов осуществляется с учетом изменения, как топологии, так и нагрузки сети. Существуют несколько модификаций адаптивной маршрутизации, различающихся тем, какая именно информация используется при выборе маршрута. Получили распространение такие модификации, как локальная, распределенная, централизованная и гибридная адаптивные маршрутизации.
Локальная адаптивная маршрутизация основана на использовании информации, имеющейся в данном узле и включающей: таблицу маршрутов, которая определяет все направления передачи пакетов из этого узла; данные о состоянии выходных линий связи (работают или не работают); длину очереди пакетов, ожидающих передачи. Информация о состоянии других узлов связи не используется. Таблица маршрутов определяет кратчайшие маршруты, обеспечивающие доставку пакета адресату за минимальное время. Преимущество такого метода состоит в том, что принятие решения о выборе маршрута производится с использованием самых последних данных о состоянии узла. Недостаток метода заключается в его «близорукости», поскольку выбор маршрута осуществляется без учета глобального состояния всей сети. Следовательно, всегда есть опасность передачи пакета по перегруженному маршруту.
Распределенная адаптивная маршрутизация основана на использовании информации, указанной для локальной маршрутизации, и данных, получаемых.от.соседних узлов- сети. В каждом узле формируется таблица маршрутов (каталог) ко всем узлам назначения; где указываются маршруты с минимальным временем задержки пакетов. До начала-работы сети, это время оценивается, исходя из топологии сети. В процессе работы сети узлы периодически обмениваются с соседними узлами, так называемыми таблицами задержки, в которых указывается нагрузка (длина очереди пакетов) узла. После обмена таблицами задержки каждый -узел перерассчитывает задержки и корректирует маршруты с учетом поступивших данных и длины очередей в самом узле. Обмен таблицами задержки может осуществляться не только периодически, но и асинхронно в случае резких изменений нагрузки или топологии сети. Учет состояния соседних узлов при выборе маршрута существенно повышает эффективность алгоритмов маршрутизации, но это достигается за счет увеличения загрузки сети служебной информацией. Кроме того, сведения об изменении состояния узлов распространяются по сети сравнительно медленно, поэтому выбор маршрута производится по несколько устаревшим данным.
Централизованная адаптивная маршрутизация характеризуется тем, что задача маршрутизации для каждого узла сети решается в центре маршрутизации (ЦМ). Каждый узел периодически формирует сообщение о своем состоянии (длине очередей и работоспособности линий связи) и передает его в ЦМ. По этим данным в ЦМ для каждого узла составляется таблица маршрутов. Естественно, что передача сообщений в ЦМ, формирование и рассылка таблиц маршрутов — все это сопряжено с временными задержками, следовательно, с потерей эффективности такого метода, особенно при большой пульсации нагрузки в сети. Кроме того, есть опасность потери управления сетью при отказе ЦМ.
Гибридная адаптивная маршрутизация основана на использовании таблиц маршрутов, рассылаемых ЦМ узлам сети, в сочетании с анализом длины очередей в.узлах. Следовательно, здесь реализуются принципы централизованной и локальной маршрутизации. Гибридная маршрутизация компенсирует недостатки централизованной (маршруты, формируемые центром, являются несколько устаревшими) и локальной («близорукость» метода) маршрутизации и воспринимает их преимущества: маршруты центра соответствуют глобальному состоянию сети, а учет текущего состояния узла обеспечивает своевременность решения задачи.
7. ТЕЛЕКОММУНИКАЦИОННЫЕ СИСТЕМЫ
7.1.Основные сведения о телекоммуникационных системах
Основная функция телекоммуникационных систем (ТКС), или территориальных сетей связи (ТСС), в условиях функционирования ТВС заключается в организации оперативного и надежного обмена информацией между абонентами, а также в сокращении затрат на передачу данных. Главный показатель эффективности функционирования ТКС — время доставки информации. Он зависит от ряда факторов: структуры сети связи, пропускной способности линий связи, способов соединения каналов связи между взаимодействующими абонентами, протоколов информационного обмена, методов доступа абонентов к передающей среде, методов маршрутизации пакетов и др.
Понятие «территориальная» означает, что сеть связи распределена на.значительной территории. Она создается в интересах всего государства, учреждения,, предприятия фирмы, имеющей отделения по району, области или по всей стране. Характерные особенности ТСС:
разнотипность каналов связи -— от проводных каналов тональной частоты до оптоволоконных и спутниковых;
ограниченность числа каналов связи между удаленными абонентами, по которым необходимо обеспечить обмен данными, телефонную связь, видеосвязь, обмен факсимильными сообщениями;
наличие такого критически важного ресурса, как пропускная способность каналов связи.
Следовательно, ТСС — это географически распределенная сеть, объединяющая в себе функции традиционных сетей передачи данных (СПД), телефонных сетей и предназначенная для передачи трафика различной природы, с разными вероятностно-временными характеристиками.
7.2.Типы сетей, линий и каналов связи.
В ТВС используются сети связи - телефонные, телеграфные, телевизионные, спутниковые. В качестве линий связи применяются: кабельные (обычные.-телефонные линии связи, витая пара, коаксиальный кабель, волоконно-оптические линии связи (ВОЛС) или световоды, радиорелейные и радиолинии.
Среди кабельных линий связи наилучшие показатели имеют световоды. Основные их преимущества: высокая пропускная способность (сотни мегабит в секунду), обусловленная использованием электромагнитных волн оптического диапазона; нечувствительность к внешним электромагнитным полям и отсутствие собственных электромагнитных излучений, низкая трудоемкость прокладки оптического кабеля; искро -, взрыво - и пожаробезопасность; повышенная устойчивость к агрессивным средам; небольшая удельная масса (отношение погонной массы к полосе пропускания); различные области применения (создание магистралей коллективного доступа, систем связи ЭВМ с периферийными устройствами локальных сетей, в микропроцессорной технике и т.д.).
Недостатки ВОЛС: передача сигналов осуществляется только в одном направлении, подключение к световоду дополнительных ЭВМ значительно ослабляет сигнал, необходимые для световодов высокоскоростные модемы пока еще дороги, световоды, соединяющие ЭВМ, должны снабжаться преобразователями электрических сигналов в световые и обратно.
В ТВС нашли применение следующие типы каналов связи (или режимов передачи):
• симплексные, когда передатчик и приемник связываются одним каналом связи, по которому информация передается только в одном направлении (это характерно для телевизионных сетей связи);
полудуплексные, когда два узла связи соединены также одним каналом, по которому информация передается попеременно то в одном направлении,- то в противоположном (это характерно для информационно-справочных, запросно-ответных систем);
дуплексные, когда два узла связи соединены двумя каналами (прямым каналом связи и обратным), по которым информация одновременно. передается в противоположных направлениях. Дуплексные каналы применяются в системах обратной связью.
7.3.Коммутируемые и выделенные каналы связи.
В ТКС (ТСС) различают выделенные (некоммутируемые) каналы связи и с коммутацией на время передачи информации по этим каналам.
При использовании выделенных каналов связи приемопередающая аппаратура узлов связи постоянно соединена между собой. Этим обеспечивается высокая степень готовности системы к передаче информации, более высокое качество связи, поддержка большого объема графика. Из-за сравнительно больших расходов на эксплуатацию сетей с выделенными каналами связи их рентабельность достигается только при условии достаточно полной загрузки каналов.
Для коммутируемых каналов связи, создаваемых только на время передачи фиксированного объема информации, характерны высокая гибкость и сравнительно небольшая стоимость (при малом объеме трафика). Недостатки таких каналов: потери.времени на коммутацию (на установление связи между абонентами), возможность блокировки из-за занятости отдельных участков линии связи, более низкое качество связи, большая стоимость при значительном, объеме трафика.
Аналоговое и цифровое кодирование цифровых данных. Пересылка данных от одного узла ТКС к другому осуществляется последовательной передачей всех битов сообщения от источника к пункту назначения. Физически информационные биты передаются в • виде аналоговых или цифровых электрических сигналов. Аналоговыми называются сигналы, которые могут представлять бесчисленное количество значений некоторой величины в пределах ограниченного диапазона. Цифровые (дискретные) сигналы могут иметь одно значение или конечный набор значений. При работе с аналоговыми сигналами для передачи закодированных данных используется аналоговый несущий сигнал синусоидальной формы, а при работе с цифровыми сигналами — двухуровневый дискретный сигнал. Аналоговые сигналы менее чувствительны к искажению, обусловленному затуханием в передающей среде, зато кодирование и декодирование данных проще осуществляется для цифровых сигналов.
Аналоговое кодирование применяется при передаче цифровых данных по телефонным (аналоговым) линиям связи,, доминирующим в региональных и глобальных ТВС и изначально ориентированным на передачу акустических сигналов (речи). Перед передачей цифровые данные, поступающие обычно из ЭВМ, преобразуются -в аналоговунЬ форму с ломощью модулятора-демодулятора (модема), обеспечивающего цифро-аналоговый интерфейс. •;; • •'
Возможны три способа преобразования цифровых данных в аалоговую форму или три метода модуляции:
• амплитудная модуляция, когда меняется только амплитуда несущей синусоидальных колебаний в соответствии с последовательностью передаваемых- информационных битов: например, при передаче единицы амплитуда колебаний устанавливается большой, а. при передаче нуля — малой либо сигнал несущей вообще отсутствует;
частотная модуляция, когда под действием модулирующих сигналов (передаваемых информационных битов) меняется только частота несущей синусоидальных колебаний: например, при передаче нуля - низкая, а при передаче единицы - высокая;
фазовая модуляция, когда в соответствии с последовательностью передаваемых информационных битов изменяется только фаза несущей синусоидальных колебаний: при переходе от сигнала 1 к сигналу 0 или наоборот фаза меняется на 180°.
Передающий модем преобразует (модулирует) сигнал несущей синусоидальных колебаний (амплитуду, частоту или фазу) таким образом, чтобы он мог нести модулирующий сигнал, т.е. | цифровые данные от ЭВМ или терминала. Обратное преобразование (демодуляция) осуществляется принимающим модемом. В соответствии с реализуемым методом модуляции различают модемы с амплитудной, частотной и фазовой модуляцией. Наибольшее распространение получили частотная и амплитудная модуляции.
Аналоговый способ передачи цифровых данных обеспечивает широкополосную передачу путем использования в одном канале сигналов различных несущих частот. Это обеспечивает взаимодействие большого количества абонентов (каждая пара.абонентов работает на своей частоте).
Цифровое кодирование цифровых данных