.


:




:

































 

 

 

 


12




e i=IRmsinwt, I=Iej0, uR=URmsinwt;UR=URej0; uL=ULm=sin(wt+π/2); UL=ULej90; = R L, u=uR+uL=URmsinwt+ULm(wt+π/2); . . :1. I, , φ=0, .2. UR=0,707URm, .3. UL=0,707ULm, 90. 4... , , UR UL U. , R XL φ<90; U=√UR2+UL2;UR=Ucosφ;UL=Usinφ;cosφ=UR/U;sinφ=UL/U;tgφ=UL/UR;

: : Z=√R2+XL2;R=Zcosφ; XL=Zsinφ; cosφ=R/Z; sinφ=XL/Z; tgφ=XL/R; : : S=√P2=Ql2; P=Scosφ ;QL=Ssinφ ;cosφ=P/S; sinφ=QL/S;tgφ=QL/P;

 

13. RC. RC-. . . , , . . . i=Imsin w t; I =Iej0;uR=URmsin w t; UR =URej0;uc=Ucmsin(wt-π/2); U c=Uce-j90; u=ur+uc=URmsin w t+Ucsin(wt+π/2); . . . : 1. I, , φ=0, . 2. UR=0,707uRm, . 3. UL=0,707, 90 4... , , UR U U. u=√UR2+Uc2; U =Ur-jUc=Ue-; u=Umsin(wt-φ);UR=Ucosφ; Uc=Ucosφ; cosφ=Ur/U; sin φ= Uc/U; tg φ=Uc/Ur. , . : Z=√U2+Xc2; Z =U-jXc=Ze-; Xc=Zsin φ; R=Z cosφ; cosφ=R/Z; sin φ= Xc/Z; tg φ=Xc/R. : I=U/R; U=IR; R=U/I;

 

14. . - RL C. -. . . , , .i=Imsinwt UR=URmsinwt. 90o UL=ULmsin(wt+/2)


900 UC=UCmsin(wt+/2) ;URm=ImR; ULm= ImwL=ImXL;Ucm=Im1/wC=ImXC;. ;UR=IR;UL=IXL;UC=IXC R,L C , U=UR+UL+UC=URmsinwt+ULmsin(wt+/2)+UCmsin(wt+/2) R, L C ., XL > XC. :1) , , ..y=0.2) , .3) UL, 9004) UC, 9005) . :1) UL UC , .

U=UL+UC+sinwt+Ulmsin(wt+/2)+UCmsin*(wt+/2)=(ULm-Ucmsin(wt+/2)=Upmsin (wt+/2)

,

U=UR+Up=URmsinwt+Upmsin(wt+/2)= Umsin(wt+φ). ULm > UCm, .. (XL > XC).

Up=UL-UC

.. φ <90 .2) ,

U=√ U2R +(UL-UC)2 =√U2R+U2p

, ULm < UCm (XL < XC) , φ<90, , . -. , . :R=UR/I, ;

XP=XL-XC=UL/I-UC/I=UP/I- ;Z=U/I, ;Z=√(R2+XL-XC) 2=√ R2+X2P;R=Zcosφ; cosφ=R/Z;

XP=Zsinφ;sinφ=XP/R. i=U/Z=U/√ R2 +(XL-XC)2. . , . ;P=URI=RI2;UR=IXL. : QL=ULI=XLI2;UL=IXL; :QC=UCI=XCI2;UC=IXC; :

Q=(QL-QC)=I(UL-UC);

Q=I2(XL-XC)=I2XP; S=UI. : S=√P2+(QL-QC)2

. , . , . φ>0, Q>0 Q=UI sinφ. φ<0, Q<0 Q=UIsinφ , .. cosφ=cos(-φ).P=URI;UR=Ucosφ P=UIcosφ . P=Scosφ;C;Q=S sinφ.; cosφ=P/S; cosφ=Q/S - R,L S. ;p=pR+pL+pC=uRi+uLi+uCi; i=Imsinwt; uR=URmsinwt; uL=ULmsin(wt+/2); uC=UCm ULmsin(wt- /2); p= Imsinwt*URmsinwt+ImsinwtULmsin(wt+/2)+ImsinwtUCmsin(wt-/2); sin(wt+/2)=coswt*sin(wt-/2)=coswt; p=ImURmsin2wt+ImULmsinwtcoswt-ImUCmsinwtcoswt; sinwtcoswt=sin2wt/2; p=√2I*√2URsin2;

wt+√ 2I2UL sin2wt/2-√ 2I2UC sin2wt/2=2URIsin2wt+2IULsin2wt/2-2IUCsin2wt/2=2URIsin2wt+I

ULsin2wt-IUCsin2wt. pL pc 2w. ( )., XL>XC. QL QC . , . (WL>WC XL>XC), , . . , , ( .. WL<WC, XL<XC), , , . , , , ( ). XL=XC, WL=WC .- .1) φ<900 XL>XC - .2) φ<900 X<XL - .3) ,i=Imsinwt XL>XC;u=Umsin(wt+φ), XL<XC; u=Umsin(wt+φ); 4) U=√U2R+(UL-UC)2 U=U/Z=U/√ R2+(XL-XC)2


6) Z=√ R2+(XL-XC) 2=√ R2+X2P. XL=XC, Z=R .7) : , . .

 

15. . . . 4- - , . Z = Z jφz . . Z=F(f) .., . φ=F(f) . . . . : . f (w). - - -. RL:|w|=R: w=R/L: f=R/2πL: RC:|1/wC|=R: w=1/RC: f=1/2πRC: , :Z=R√ 2: :|φ|=450, k=0,707. RC- . RC . -: Z =R+1/jwC=R-j*1/wC =Ze-jφz: Z=|Z(w)|=√R2+1/w2C2=√R2+X2C: w=2πf; w, - , Zw(Z). , , . - RC- . (): w=o: Xc=1/wC→∞: Z=√R2+X2C →∞: φz=--arctgXc/R=--900 ():w→∞: Xc=1/wC=0: Z=√R2+X2C=R: φz=--arctgXc/R=00 .. R=X, . - : Z=√ R2+XC2 = √ 2R2 =√ 2R. : . -. φ=arctg(--Xc/R)=-arctg*1/wCR=--arctgw/w. RL: . . - : Z =R+jwL=Zejφz . -: Z = √ R2+w2L2 =√ R2+XL2 W . - Z . , , . - RL . :; :; .. R=XL . - :Z=√ R2+XL2 = √ 2R2 = √ 2R: : . -: φZ=arctgXL/R=arctg*wL/R=arctg*w/w

 

16. . - . 1- , , 2- . 3- . . U(t)=U0+Um1sin(w1t+φ)+Um2sin(2w1t+φ2)+Um3sin(3w1t+φ3)+..+Umksin(kw1t+φk) .U0 , . Um1(w1t+φ1) . Um2(2wt+φ2) .Umksink(wt+φk)=Umksinkwtcosφk+Umkcoskwtsinφk;Umkcosφk=Bk, Umksinφk=Ck.Umksin(kw1t+φk)=Bksinkw1t+Ckcoskw1t. U(t)=U0+B1sinw1t+B2sin2w1t+B3sin3w1t++Bksinkw1t+C1cosw1t+C2cos2w1t+C3cos3w1t++Ckcoskw1t. 0. => 1/2.

20sinwtdt=-1/2w*coswt|20=1/2w(cos2-cos0)=1/2w*(1-1)=0. . , , , . F(wt) = -F(wt+) , , , , :F(wt)=Im1sin(wt+φ1)+Im3sin(3wt+φ3)+Im5sin(5wt+φ)5). F(wt) = -F(-wt) F(wt), -F(-wt) F(wt) = B1sinwt+B2sin2wt+B3sin3wt++Bksinkwt. F(wt)=F(-wt), F(wt)=U0+C1coswt+C2cos2wt+C3cos3wt.

17) . , , . , Q = I2RT. - . Q0 = I02RT . Q1 = I12RT . I2RT = I02RT + I12RT + + Ik2RT, I2RT = RT(I02+I12+I22++Ik2), I2 = I02+I12+I22++Ik2, I = √ I 0 2 + I 1 2 + I 2 2 ++ I k2, U = √ U 02 + U 12 + U 22 + U k2. I2R = I02R + I12R + I22R + + Ik2R . P = P0 + P1 + P2 + P3 + P = P = U0I0 + U1I1cosφ1+U2I2cosφ2 .

18) . , 2- . 1, , , , ..uc =Ui3=(U uc)/ Ri, Ri . . Wc=CU2/2. , , L ( 2) t=0 i. . . eL, (- ) , . Uc , Wc , WL . , . t1 Uc . , . . W L = LI2/2. t1 , , .. Uc=0. (- ). , , . , . , , . , \ , , , . , . , . t2 . . , . , . , , .. , . , .. , , . ( ) , . -, 900. i = Im sin w0t; uc = Um sin (w0t+900); w0 . . w0, .WmC = WmL = Cucm2/2 = LIm2/2. Im - Im = UCm/XL = UCm/w0L, CUcm2/2=LUcm2/2w02L2 CUcm2*2w02L2/2LUcm2=CLw02 ; wo=2πf0 w0 \ f0 = w0/2 w0, f0=1/2√ L. 0=1/f0, T0=2√ L. , L C. . , . L, eL= --L*di/dt . L , . . . CUm2/2=LIm2/2 , CUm2= LIm2 Im2=CUm2/L=Um2/L/C Im=Um/.√ L/C.L/C. . P=√ L/C.. , w0. XL0=w0L=1/√ LC *L=L/√ LC. , L= √L * √L; XLo= √L * √L / √L * √C = √L / √C =√ L/C XLo=1/w0C=1/1/√ L/C*C =√ L/C*C. , C= √C * √C;

XC0=/ √L * √C / √C * √C = √L * √C =√ L/C. . w0 , λ0=*T0=3*108*2√ LC; λ0=C/f0;

 

19. . . . ... . - . RLC. e=Em sin wt; u1=e1; u1=U1m sin wt. - . . LC . . : 1). . LC . 2) . = w0=w; R0=R. XL0=XC0. 3) . ( Rn<2j=2√ t) .. . . 2- .: 1) LC. 2) LC . . . w0=w; f0=f; XL0=XC0. w0L=1/w0C; w02Le=1; w02=1/LC; w=1/√ LC. Z 0=R+jXL0-jXC0=R+j(XL0-XC0)=R. . . .. Z 0=R; I 0=U/Z0=U/R. .. . . .

20. . . . . . . () . . PL=(L1/L1+L2)<1. R0II=PL2*R0I; R0II < R0I. II Q=Q/(1+PL2*(R0I/Ri))=Q/(1+(R0II/Ri)) PL, R0II QII. Ri R. . PL QII .

21. . . . .- ( ) . , . . . . .- . . . . . . . 1) (. . .).2) (, ). : 1) =/√ L1L2 . . . . 2) =L/√ L1L2. . 3) =√ 1C2/. .. , . 4) = /√ 1C2. .. .

22 , . . - , . , , ( , ) , WL=LI2/2 Wc=CU2/2 . , , , dt=0, .. . P=dW/dt=dW/0=∞, . , , . . R, L, C , , . : , , . iL(+0)=iL(-0) : , , . UC=(+0)UC(-0)

 

23. . . , .. . , . . , 1 2 . . , .. . , , , , .. , . , , . , , : . . , , . . 4- . , . (1,1), (2,2). . 4- : . 4- . , , . 4- , . 4- : 1) , 4(LC,RC,RLC); 2) , .. , - 4-: - , - , - , - , - , . 4- 4-, . 4- . . 4- . 4- . . 4- , 4- 4- . . . A,B,C,D . . - 4-: A=1+Z1/Z2; B= Z 1+ Z 3+ Z 1* Z 3/ Z 2; C=1/ Z 2; D=1+ Z 3/ Z 2. - 4-: A=1+ Z 2/ Z 3; B= Z 2; C= Z 1+ Z 2+ Z 3/ Z 1* Z 3; D=1+ Z 2/ Z 1; - 4-: A=1; B= Z 1; C=1/ Z 2; D=1+ Z 1/ Z 2. - 4: A =1+ Z 1/ Z 2; B= Z 1; C=1/ Z 2; D=1. - : { U 1=A* U 2+B* I 2, I 1=C* U 2+D* I 2}; - 4-. - . , D , - , - , - , . - , , - . |AC,BD|. - A*DB*C=1B*C=1, . - 4-:(1+ Z 1/ Z 2)*(1+ Z 3/ Z 2)--(Z 1+ Z 3+ Z1*Z3 / Z 2)*1/ Z 2=1+ Z 1/ Z 2+ Z 3/ Z 2+ Z1*Z3/ Z 22-- Z 1/ Z 2-- Z 3/ Z 2-- Z1*Z3/ Z 22=1; - 4-: (1+ Z 2/ Z 3)* (1+ Z 2/ Z 1)(Z 1+ Z 2+ Z 3/ Z 1* Z 3)* Z 2=1+ Z 2/ Z 3+ Z 2/ Z 1+ Z 22/ Z 1* Z 3-- Z 1* Z 2/ Z 1* Z 3-- Z 22/ Z 1* Z 3-- Z 3* Z 2/ Z 1* Z 3= 1.

 

24. . . . , , - . , , . , , , , , ; . , (LC), , . (RC), (ARC), , , , .

25. . , 0, , 3. . , .. , . , . .

26. . , α 𝝎 𝝎 - , . , . , 𝝎0=1/√LC=1√LC. 𝝎<𝝎0 , . , , , 𝝎>𝝎0 , , . 𝝎 𝝎 , 𝝎,=𝝎0(√q+1√q), q=L/L, 𝝎0=√𝝎×𝝎.

27. . , , , 3, , , . , , , . . ( ) , .. .

28. . . . , m. , . , , , . =0 , 𝝎2=1/√L2C2 𝝎=1/√L4C4, .. . =0 , =∞. , 𝝎2 𝝎4 ∞, .

29. . . x, y, z , . . . , , , , Ua, Ub, UC U. , , , , UA, UB, Uca U. X , Y, , . . :UAB=UB-UC UCA=UC-UA , . UA, UB, UC , UA, UB, Uca . uA, uB, uC 120. UAB U UB - UB. UBC UB UC UCA UC UA. √3 UAB 30 UA; 30.

30. . . X , Z . , , , . , . . UAB = UA, Ubc = Ub, Uca = Uc c . , , ..., , , , . ..., , . , ... . ... , , , . . ==-, , ... , ..++=0. . , , C, . . +-=-2. , ... ..., ( ) .

 

. 1 - , . , . .2 - . . . . . 3 - . . 4 - . - . 5 - . , , , . 6 - . , , , . 7 - , , . 8 - , . - . 9 - 2- . . , . I=f(R); U=f(R). 10 - - . 11 - R. - , , , . . . 12 - RL. RL-. . - . , , . . . 13 - RC. RC-. . - . , , . . . 14 - . RLC. , . XL<XC. 15 - . . . RL RC. 16 - . 17 - . 18 - . . . . 19 - . . . 20 - . .. 21 - . . . 22 - , . - . 23 - 4- (, ). 24 - . . 25 - . 26 - . 27 - . 28 - . 29 - . . 30 - . .

 





:


: 2016-03-27; !; : 794 |


:

:

, , .
==> ...

2517 - | 2083 -


© 2015-2024 lektsii.org - -

: 0.049 .