Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Непараметрические методы оценки связи




Методы корреляционного и регрессионного анализа не универсальны: их можно применять, если все изучаемые признаки являются количественными. Между тем в статистике приходиться сталкиваться с задачами измерения связи между качественными признаками. Такие методы измерения связи называются непараметрические.

Для исследования степени тесноты связи между качественными признаками, каждый из которых представлен в виде альтернативных признаков, может быть использован коэффициент ассоциации Д. Юла или коэффициент контингенции К. Пирсона. Расчетная таблица в этом случае состоит из четырех ячеек (таблица «четырех полей») и имеет следующий вид:

Признаки А (да) (нет) Итого
B (да) a b а + b
(нет) c d c + d
Итого a + c b + d n

Коэффициент ассоциации вычисляется по формуле:

.

Коэффициент контингенции:

.

Если по каждому из взаимосвязанных признаков выделяется число групп более двух то для подобного таблиц теснота связи между качественными признаками может быть измерена с помощью коэффициентов взаимной сопряженности К. Пирсона и А. А. Чупрова.

Коэффициент взаимной сопряженности Пирсона вычисляется по формуле:

, где j2 – показатель средней квадратической сопряженности, который вычисляется по формуле:

, где , .

Коэффициент Чупрова:

, где К1, К2 – число групп по каждому из признаков.

Для определения тесноты связи как между количественными, так и между качественными признаками, при условии, что значение этих признаков могут быть проранжированы по степени убывания или возрастания, используется коэффициент корреляции рангов Спирмена:

,

где d – разность рангов признаков x и y;

n - число наблюдаемых единиц.

В случае отсутствия связи r = 0. При прямой связи коэффициент r - положительная правильная дробь, при обратной – отрицательная.

Если объём исходной информации небольшой, то необходимо выполнить проверку существенности рангового коэффициента, т. е. сверить с таблицей предельных значений. Расчетное значение r должно быть больше предельного.

Для определения тесноты связи между произвольным числом ранжированных признаков применяется коэффициент конкордации:

,

где m – количество факторов;

n - число наблюдений;

S - отклонение суммы квадратов рангов от средней квадратов рангов.

Рассмотрим пример:

В результате обследования студентов факультета получены следующие данные:

Успеваемость Количество студентов Всего
Посещающих спортивные секции Не посещающих спортивные секции
Удовлетворительная      
Неудовлетворительная      
Итого      

Определите коэффициент ассоциации и контингенции между успеваемостью и посещаемостью спортивных секций.

Коэффициент ассоциации:

Коэффициент контингенции:

.

Полученные коэффициенты подтверждают наличие существенной связи между исследуемыми признаками. Однако коэффициент контингенции всегда меньше коэффициента ассоциации и дает более корректную оценку тесноту связи.

 

 





Поделиться с друзьями:


Дата добавления: 2015-11-23; Мы поможем в написании ваших работ!; просмотров: 420 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Наука — это организованные знания, мудрость — это организованная жизнь. © Иммануил Кант
==> читать все изречения...

2280 - | 2077 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.01 с.