Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Выполняется, и это означает, что коэффициент корреляции значим (имеет место зависимость между параметрами х и у)




2. Вычисление средней ошибки коэффициента корреляции

При r/mr ³ 3 коэффициент корреляции считается достоверным, т.е. связь доказана. При r/mr < 3 связь недостоверна.

Для рассматриваемого примера , r/mr = 0,51/0,148 = 3,446 > 3 – связь достоверна.

 

3. Метод сравнения контрольных карт медиан

Простым методом анализа степени корреляционной зависимости считается метод медиан (метод сравнения графиков), удобный при исследовании технологического процесса с использованием данных, полученных на рабочем месте.

Пусть величины х и у заданы с помощью графиков или контрольных карт, причем количество измерений для параметров х и у должно быть одинаково. Проводятся линии медианMex, Mey. Точкам выше медиан присваивается символ «+»,точкам ниже медиан - символ «-»,точкам, находящимся на медиане - символ «0».

Рис. 17

Каждой паре значений (x,y) соответствует пара символов. Пары символов заменяются одним кодом по правилам:

Пара Код
+ + +
– – +
+ –(– +)
+ 0  
– 0  
0 0 +


Далее следует подсчитать:

- число кодов " + " - N(+),
- число кодов "–" - N(–),
- число кодов "0" - N(0),

- число k = N(+) + N(-).


Затем нужно вычислить два числа P = N(+) + N(0)/2 и M = N(–) + N(0)/2 и найти наименьшее из них min (Р, М). По таблице кодовых значений для известного значения k и заданном коэффициенте риска α = 1 – Р (Р - доверительная вероятность) следует найти соответствующее минимальное значение mink.
Если min (Р, М) ≤ mink, то корреляционная зависимость существует, причем:

при P > M - положительная (прямая) корреляция;
при P < M – отрицательная (обратная) корреляция

Применим этот метод для рассматриваемого нами примера:

Рис. 18

Подсчитываем числа кодов:

Р = N(+) + N(0)/2= 13 + 3/2 = 14,5;

М = N(–) + N(0)/2 = 9 + 3/2 = 10,5;

k = 13 + 9 = 22.

Из двух значений Ри Мвыбирается меньшее (10,5) и сравнивается с кодовым значением из таблицы 4, соответствующим значению k. По таблице 4 находим, что кодовое число, соответствующее k = 22, при коэффициенте риска 0,05 равно 5. Поскольку min (Р, М) = 10,5 > 5, можно сделать заключение о том, что корреляция отсутствует, т.е. нельзя говорить о корреляционной зависимости между давлением сжатого воздуха и процентом дефектов в процессе литья под давлением тонкостенных деталей.

Таблица 4 - Таблица кодовых значений

k α k α k α
0,01 0,05 0.01 0.05 0.01 0.05
                 
                 
                 
                 
                 
                 
                 
                 
                 
                 
                 
                 
                 
                 
                 
                 
                 
                 
                 
                 
                 
                 
                 
                 
                 
                 
                 
                 

 

4. Метод медиан на диаграмме разброса

Другой метод анализа оценки значимости корреляционной зависимости основан на проведении на диаграмме разброса вертикальной и горизонтальной прямых линий, соответствующих медианным значениям переменных х и у. Выше и ниже горизонтальной прямой, справа и слева от вертикальной прямой должно быть равное число точек. Если общее число точек окажется нечетным, медианы следует провести через центральную точку (в приведенном примере на рисунке 19 вертикальная и горизонтальная медианы пройдут через 13-ю точку ранжированного ряда, так как число точек равно 25).

Рисунок 19 – Диаграмма рассеяния для давления сжатого воздуха и процента дефектов

В каждом из четырех квадрантов, получившихся в результате разделения диаграммы разброса вертикальной и горизонтальной медианами, подсчитывают число точек и обозначают n1, n2, n3, n4 соответственно. Точки, через которые прошла медиана не учитывают. Отдельно складывают точки в положительных (1-ый и 3-ий) и отрицательных (2-ой и 4-ый) квадрантах.

Положительные и отрицательные квадранты рассматриваются относительно проведенных на диаграмме разброса медиан.

n (+) = n1 + n3

n (-) = n2 + n4

k = n (+) + n (-)

Для рассматриваемого примера:

n (+) = 6 +7 = 13

n (-) =7 + 3 = 10

k =13 + 10 = 23

Так как две точки находятся на медиане, то k не равно 25.

 

Для определения наличия и степени корреляции по методу медиан также используется таблица кодовых значений (таблица 4), соответствующих различным значениям k при двух значениях коэффициента риска α (0,01 и 0,05).

Из n(+) и n(-) выбирается меньшее значение и сравнивается с кодовым значением из таблицы 4. Делают заключение о наличии или отсутствии корреляции. Если меньшее из чисел n оказывается равным или меньше табличного кодового значения, то корреляционная зависимость имеет место. В случае, когда n(+) > n(-), то это свидетельствует о прямой корреляции, в противном случае, когда n(+) < n(-), можно говорить об обратной корреляции. В рассматриваемом примере табличное кодовое значение при коэффициенте риска α = 0,05, соответствующее k = 23, равно 6. Поскольку n (+) = 13, n(-) = 10, то меньшим из чисел будет n(-) = 10, а 10 > 6, можно утверждать, что в данном случае между двумя параметрами не наблюдается корреляционной зависимости, т.е. нельзя говорить о корреляционной зависимости между давлением сжатого воздуха и процентом дефектов в процессе литья под давлением тонкостенных деталей.

Исходя из различных способов выявления наличия корреляционной зависимости, получаем, что расчетный коэффициент корреляции является значимым и значит, корреляционная зависимость существует. Однако изучение диаграммы по методу медиан и методу сравнения соответствующих графиков показывает, что явной корреляционной зависимости не наблюдается. Поэтому, проведя один анализ, или рассматривая диаграмму рассеяния однобоко, нельзя однозначно сказать о наличии корреляционной зависимости или о ее характере (прямая, обратная и т.д.), а если такое заключение делается, то оно требует либо проверки экспериментом, либо проведения дополнительного исследования.

Иногда случайно проявляется сильная корреляция, которая не подкрепляется вовсе, или подкрепляется слишком слабой причинно-следственной зависимостью между ними. Корреляция такого рода называется ложной корреляцией. Даже если коэффициент корреляции высок, это совсем не обязательно указывает на причинно-следственную связь.

 






Поделиться с друзьями:


Дата добавления: 2015-11-23; Мы поможем в написании ваших работ!; просмотров: 861 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Вы никогда не пересечете океан, если не наберетесь мужества потерять берег из виду. © Христофор Колумб
==> читать все изречения...

2387 - | 2192 -


© 2015-2025 lektsii.org - Контакты - Последнее добавление

Ген: 0.013 с.